Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2521–2525 | Cite as

A study of the stabilization of aluminium titanate

  • S. Djambazov
  • D. Lepkova
  • I. Ivanov
Papers

Abstract

A tialite ceramics (Al2TiO5) was synthesized at a temperature of 1500 °C, incorporating CaF2, La2O3, SiO2 or kaolin and MgO additives. Its thermal stability was investigated by thermocycling in a reducing medium. The batches containing SiO2 or kaolin additives underwent a decomposition to rutile and corundum. A stabilized ceramic with added MgO was produced. X-ray and electron-probe microanalysis established the presence of Mg/Al, Tiz/O4, Al2−x-yTi1+xMgyO5 and Ca1−xLax/Al12−y-zMgyTiz/O19 solid solutions, which retained their chemical composition after thermocycling in a reducing medium.

Keywords

Polymer Aluminium SiO2 Solid Solution Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Lang, C. L. Fillermore and L. H. Maxwell, J. Res. Nat. Bur. Stand. 48 (1952) 298.CrossRefGoogle Scholar
  2. 2.
    W. R. Buessen, N. R. Thielke and R. V. Sarakauskas, Ceram. Age 60 (1952) 38.Google Scholar
  3. 3.
    A. S. Berezhnoi and H. V. Gulko, Sbornik Nauch, Rabot Khim. Technol. Silikatov, Moscow (1956) 217.Google Scholar
  4. 4.
    CH. Hahn, Sprechsaal 118 (1985) 1157.Google Scholar
  5. 5.
    W. Dworak and D. Fingerle, Br. Ceram. Trans. J. 86, (1987) 170.Google Scholar
  6. 6.
    G. Schuseil, cfl/Ber. DKG 6/7 (1987) 242.Google Scholar
  7. 7.
    D. Goldberg, Rev. Int. Hautes Temp. Refract. 5 (1968) 181.Google Scholar
  8. 8.
    K. Hamano, Taikabutsu 27 (1975) 520.Google Scholar
  9. 9.
    P. Nutzenadel, Freiberg Forschungsh A 604 (1979) 7.Google Scholar
  10. 10.
    G. Bayer, J. Less-Common Metals 24 (1971) 129.CrossRefGoogle Scholar
  11. 11.
    E. Kato, K. Daimon and J. Takahashi, J. Am. Ceram. Soc. 63 (1980) 355.CrossRefGoogle Scholar
  12. 12.
    E. Kato, K. Daimon and Y. Kobayashi, Yogyo Kyokai Shi 86 (1978) 626.CrossRefGoogle Scholar
  13. 13.
    E. Kato, A. Yamaguchi and Fukuda, Am. Ceram. Soc. Bull. 57 (1978) 756.Google Scholar
  14. 14.
    N. R. Thielke, WADC. Technical Reports 34 (1953) p. 53.Google Scholar
  15. 15.
    T. Kamayama and T. Yamaguchi, Yogyo Kyokaishi 84 (1976) 589.CrossRefGoogle Scholar
  16. 16.
    M. Takabatake, US Pat. 4118240 (1978).Google Scholar
  17. 17.
    M. Persson, L. Hermansonn and R. Caresson, Seh. Ceram. 11 (1981) 479.Google Scholar
  18. 18.
    K. Hamano, Z. Nakagava and K. Sawano, Nippon Kagaku Kaishi 10 (1981) 1647.CrossRefGoogle Scholar
  19. 19.
    M. Kajiwara, Br. Ceram. Trans. J. 86 (1987) 77.Google Scholar
  20. 20.
    S. Babayan, K. Kostavian and Geodakian, Arm. Chim. Shur. 26 (1973) 549.Google Scholar
  21. 21.
    H. W. Hennicke and W. Lingenberg, cfi/Ber. DKG 63 (1986) 100.Google Scholar
  22. 22.
    M. Tshitsuka, TS. Sato, T. Endo and M. Shimada, J. Am. Ceram. Soc. 70 (1987) 69.CrossRefGoogle Scholar
  23. 23.
    A. B. Berri, Mineralogia, (MIR, Moscow, 1987) p. 582.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. Djambazov
    • 1
  • D. Lepkova
    • 1
  • I. Ivanov
    • 1
  1. 1.Higher Institute of Chemical TechnologySofiaBulgaria

Personalised recommendations