Journal of Materials Science

, Volume 29, Issue 9, pp 2459–2466 | Cite as

Synthesis of large pore-size and large pore-volume aluminas by glycothermal treatment of aluminium alkoxide and subsequent calcination

  • M. Inoue
  • H. Kominami
  • T. Inui


Aluminas were prepared by calcination of the products obtained by glycothermal treatment of aluminium alkoxides, and their pore structures investigated by means of the nitrogen adsorption technique and mercury porosimetry. The product had a honeycomb-like texture which developed well with increasing crystallite size of the product. The crystallite size of the product was in turn controlled by the glycol used, and increased in the following order (carbon number of glycol): 2 < 3 < 6 ≪ 4. The honeycomb-like texture was preserved even after calcination. Because of the well-developed honeycomb-like texture, the alumina derived from the product obtained by the treatment of aluminium isopropoxide in 1,4-butanediol had quite large pore diameters (70 and 700 nm) and a large pore volume (2.4cm3g−1) with a sufficient surface area (184 m2g−1).


Mercury Calcination Crystallite Size Pore Volume Alkoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Trimm and A. Stanislaus, Appl. Catal. 21 (1986) 215.CrossRefGoogle Scholar
  2. 2.
    P. N. Ho and S. W. Weller, Fuel Process. Technol. 4 (1981) 21.CrossRefGoogle Scholar
  3. 3.
    H. Shimada, M. Kurita, T. Sato, Y. Yoshimura, T. Kawakami, S. Yoshitomi and A. Nishijima, Bull. Chem. Soc. Jpn 57 (1984) 2000.CrossRefGoogle Scholar
  4. 4.
    W. C. Van Zijll Langhout, C. Ouwerkerk and K. M. A. Pronk, Oil & Gas J. Dec. 1 (1980) 120.Google Scholar
  5. 5.
    R. K. Oberlander, in “Applied Industrial Catalysts”, Vol. 3, edited by B. E. Leach (Academic Press, New York, 1984) p. 63.Google Scholar
  6. 6.
    B. C. Lippens and J. H. De Boer, Acta Crystallogr. 17 (1964) 1312.CrossRefGoogle Scholar
  7. 7.
    S. J. Wilson, Miner. Mag. 43 (1979) 247.CrossRefGoogle Scholar
  8. 8.
    Idem, J. Solid State Chem. 30 (1979) 247.CrossRefGoogle Scholar
  9. 9.
    S. J. Wilson, J. D. C. McConnell and M. H. Stagey, J. Mater. Sci. 15 (1980) 3081.CrossRefGoogle Scholar
  10. 10.
    S. J. Wilson and M. H. Stagey, J. Colloid Interface Sci. 82 (1981) 507.CrossRefGoogle Scholar
  11. 11.
    D. Basmadjian, G. N. Fulford, B. I. Parsons and D. S. Montgomery, J. Catal. 1 (1962) 547.CrossRefGoogle Scholar
  12. 12.
    T. Inui, T. Miyake and Y. Takegami, J. Jpn Petrol. Int. 25 (1982) 242.CrossRefGoogle Scholar
  13. 13.
    T. Inui, T. Miyake, K. Fukuda and Y. Takegami, Appl. Catal. 6 (1983) 165.CrossRefGoogle Scholar
  14. 14.
    M. Inoue, Y. Kondo and T. Inui, Inorg. Chem. 27 (1988) 215.CrossRefGoogle Scholar
  15. 15.
    M. Inoue, H. Kominami and T. Inui, J. Chem. Soc. Faraday Trans. (1991) 3331.Google Scholar
  16. 16.
    R. W. Cranston and F. A. Inkley, Adv. Catal. 9 (1957) 143.Google Scholar
  17. 17.
    S. Winstein, E. Allerd, R. Heck and R. Click, Tetrahedron 3 (1958) 1.CrossRefGoogle Scholar
  18. 18.
    J. H. De Boer, in “The Structure and Properties of Porous Materials”, edited by D. H. Everett and F. S. Stone (Butterworth, London, 1958) p. 68.Google Scholar
  19. 19.
    B. C. Lippens, B. G. Linsen and J. H. De Boer, J. Catal. 3 (1964) 32.CrossRefGoogle Scholar
  20. 20.
    B. C. Lippens and J. H. De Boer, ibid. 4 (1965) 319.CrossRefGoogle Scholar
  21. 21.
    J. H. De Boer and B. C. Lippens, ibid. 3 (1964) 38.CrossRefGoogle Scholar
  22. 22.
    B. C. Lippens and J. H. De Boer, ibid. 3 (1964) 44.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Inoue
    • 1
  • H. Kominami
    • 1
  • T. Inui
    • 1
  1. 1.Department of Hydrocarbon Chemistry, Faculty of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations