Journal of Materials Science

, Volume 29, Issue 9, pp 2445–2458 | Cite as

Thermal stability of advanced Ni-base superalloys

  • H. M. Tawancy
  • N. M. Abbas
  • A. I. Al-Mana
  • T. N. Rhys-Jones


Exposures consisting of 1 to 900 h at 1000 and 1100 °C after an ageing treatment of 16 h at 870 °C were used to study the thermal stability of selected γ′-strengthened Ni-based superalloys representing conventional, directional solidification, and single-crystal castings. Various techniques of microscopy, spectroscopy and diffraction were used to characterize the microstructure. Primary MC carbides in the alloys studied were found to be stable toward decomposition into lower carbides. In the aged condition, the strengthening γ′ phase assumed a cuboidal morphology; however, all alloys also contained varying proportions of coarse lamellar γ′ and hyperfine cooling γ′. On an atomic scale, the nature of the cuboidal γ′-matrix interface was found to vary from coherent to partially coherent. However, the overall lattice mismatch varied from one alloy to another depending upon its composition and the distribution of various elements in carbide phases and lamellar γ′ phase. Directional growth of the cuboidal γ′ phase upon exposure to higher temperatures was found to be accelerated by a large initial lattice mismatch leading to a considerable loss of coherency, as indicated by the observation of dislocation networks around the γ′ particles. Although the composition of the γ′ phase remained essentially unchanged, there was a marked change in matrix composition. Sigma phase was found to precipitate in all alloys, but its thermal stability was a function of alloy composition. The initial decrease in hardness followed by a hardening effect during exposure could be explained in terms of the partial dissolution of the γ′ phase and precipitation of sigma phase.


Carbide Thermal Stability Directional Solidification Lattice Mismatch Carbide Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Stoloff and C. T. Sims, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 519.Google Scholar
  2. 2.
    C. T. Sims, Advanced Mater. Process. 139 (6) (1991) 32.Google Scholar
  3. 3.
    W. J. Molloy, ibid. 138 (4) (1990) 23.Google Scholar
  4. 4.
    C. H. White, P. M. Williams and M. Morley, ibid. 137 (4) (1990) 53.Google Scholar
  5. 5.
    G. K. Bouse and J. R. Mihalisin, in “Superalloys, Supercomposites and Superceramics”, edited by J. K. Tien and T. Caulfleld (Academic, New York, 1989) p. 99.CrossRefGoogle Scholar
  6. 6.
    D. Driver, “Materials at their Limit” (Institute of Metals, London, 1986) p. 519.Google Scholar
  7. 7.
    D. N. Duhl, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 189.Google Scholar
  8. 8.
    Idem and T. Caulfleld (Academic, New York, 1989) p. 149.CrossRefGoogle Scholar
  9. 9.
    B. H. Kear and D. P. Pope, ibid.“ p. 545.CrossRefGoogle Scholar
  10. 10.
    B. H. Kear and E. R. Thompson, Science 208 (1980) 847.CrossRefGoogle Scholar
  11. 11.
    N. S. Stoloff, Int. Met. Rev. 34 (4) (1989) 153.CrossRefGoogle Scholar
  12. 12.
    D. P. Pope and S. S. Ezz, ibid. 29 (3) (1984) 136.Google Scholar
  13. 13.
    A. K. Singh, N. Louat and K. Sadanada, Met. Trans. 19A (1988) 2965.CrossRefGoogle Scholar
  14. 14.
    G. M. Janowski, B. S. Harwon and B. J. Pletka, ibid. 18A (1987) 1341.CrossRefGoogle Scholar
  15. 15.
    V. Nathal and E. J. Ebert, ibid. 16A (1985) 1849.CrossRefGoogle Scholar
  16. 16.
    H. E. Collins, ibid. 5 (1974) 189.Google Scholar
  17. 17.
    E. H. Van Der Molen, J. M. Oblak and O. H. Kriege, ibid. 2 (1971) 1627.Google Scholar
  18. 18.
    H. E. Collins, Trans. ASM 62 (1969) 82.Google Scholar
  19. 19.
    H. E. Collins and R. J. Quigg, ibid. 61 (1968) 139.Google Scholar
  20. 20.
    T. Link and M. Feller-Kniepmeier, ibid. 23A (1992) 99.Google Scholar
  21. 21.
    J. H. Zhang, Z. Q. Hu, Y. B. Xu and Z. G. Wang, ibid. 23A (1992) 1253.Google Scholar
  22. 22.
    E. W. Ross and C. T. Sims, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 97.Google Scholar
  23. 23.
    S. T. Wlodek, Trans. ASM 57 (1964) 110.Google Scholar
  24. 24.
    C. Hammond and J. Nutting, Met. Sci. J. 11 (1977) 474.CrossRefGoogle Scholar
  25. 25.
    R. L. Dreshfield, J. Met. 39 (7) (1987) 16.Google Scholar
  26. 26.
    E. E. Underwood, in “Metallography, Structure and Phase Diagrams”, Metals Handbook, Vol. 8, 8th Edn (ASM, Metals Park, Ohio, 1973) p. 37.Google Scholar
  27. 27.
    S. Floreen, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 241.Google Scholar
  28. 28.
    R. G. Davies and T. L. Johnston, in “Ordered Alloys: Structural Applications and Physical Metallurgy”, edited by B. H. Kear, C. T. Sims, N. S. Stoloff and J. H. Westbrook (Claitor's Publishing Division, Baton Rouge, Louisiana, 1970) p. 447.Google Scholar
  29. 29.
    B. H. Kear, in “Order-Disorder Transformation in Alloys”, edited by H. Warlimont (Springer, New York, 1974) p. 440.CrossRefGoogle Scholar
  30. 30.
    B. R. Clark and F. B. Pickering, J. Iron Steel Inst. 205 (1967) 70.Google Scholar
  31. 31.
    B. A. Parker and D. R. F. West, J. Austral. Inst. Metals 14 (1969) 102.Google Scholar
  32. 32.
    J. Heslop, Cobalt 24 (1964) 1.Google Scholar
  33. 33.
    C. H. White, in “The Nimonic Alloys”, edited by W. Betteridge and J. Heslop (Crane, Russak Co., New York, 1974) p. 63.1.Google Scholar
  34. 34.
    P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, “Electron Microscopy of Thin Crystals” (Krieger, Huntington, New York, 1977) p. 317.Google Scholar
  35. 35.
    G. Wallwork and J. Croll, in “Review of High Temperature Materials”, Vol. III, No. 2, edited by J. B. Newkirk (Freund, Tel Aviv, Israel, 1976) p. 89.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. M. Tawancy
    • 1
  • N. M. Abbas
    • 1
  • A. I. Al-Mana
    • 1
  • T. N. Rhys-Jones
    • 2
  1. 1.Metrology, Standards and Materials Division, Research InstituteKing Fand University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Turbine Aerofoils Research and Development and Surface TechnologyDerbyUK

Personalised recommendations