Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2425–2430 | Cite as

Ionic conductivity of Na, K and Ag β″-alumina-ZrO2 composites

  • S. M. Park
  • E. E. Hellstrom
Papers

Abstract

Composite samples of Na β″-alumina with 15 vol % Zr02 stabilized with 4.5 wt % Y2O3 were fabricated using two sintering schedules. K and Ag β″-alumina composites were prepared from the Na β″-alumina composite by ion exchange. The ionic conductivities of the Na, K, and Ag composites at 300 °C were 1.3×10−1, 5.9×10−2 and 6.8×10−3 S cm−1, respectively. K1c for the K composite was as high as 3.7 MPam1/2.

Keywords

Polymer Alumina Ionic Conductivity Y2O3 Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Lange, B. I. Davis and D. O. Raleigh, Commun. Amer. Ceram. Soc. 66 (1983) C-50.Google Scholar
  2. 2.
    L. Viswanathan, Y. Ikuma and A. V. Virkar, J. Mater. Sci. 18 (1983) 109.CrossRefGoogle Scholar
  3. 3.
    J. G. P. Binner, R. Stevens and S. R. Tan, in “Advances in Ceramics”, Vol 12, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 428.Google Scholar
  4. 4.
    Y. Sheng, P. Sarkar and P. S. Nicholson, J. Mater. Sci. 23 (1988) 958.CrossRefGoogle Scholar
  5. 5.
    D. J. Green, ibid. 20 (1985) 2639.CrossRefGoogle Scholar
  6. 6.
    G. E. Youngblood, A. V. Virkar, W. R. Cannon and R. S. Gordon, Amer. Ceram. Soc. Bull. 56 (1977) 206.Google Scholar
  7. 7.
    D. J. Green and M. G. Metcalf, ibid. 63 (1984) 803Google Scholar
  8. 8.
    A. J. Virkar, J. Mater. Sci. 16 (1981) 1142.CrossRefGoogle Scholar
  9. 9.
    G. C. Farrington and B. Dunn, Solid State Ionics 7 (1982) 267.CrossRefGoogle Scholar
  10. 10.
    G. C. Farrington, B. Dunn and J. O. Thomas, Appl. Phys. A 32 (1983) 159.CrossRefGoogle Scholar
  11. 11.
    J. B. Bates, Mater. Sci. Forum 1 (1984) 135.CrossRefGoogle Scholar
  12. 12.
    G. M. Crosbie and G. J. Tennenhouse, J. Amer. Ceram. Soc. 65 (1982) 187.CrossRefGoogle Scholar
  13. 13.
    B. A. Boukamp, Equivalent circuit fitting program equivert (Technical University Twente, Twente, The Netherlands).Google Scholar
  14. 14.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  15. 15.
    J. L. Shen, S. A. Howard, J. Liu and P. D. Ownby, ibid. 75 (1992) 52.CrossRefGoogle Scholar
  16. 16.
    S. M. Park and E. E. Hellstrom, Solid State Ionics 44 (1990) 55.CrossRefGoogle Scholar
  17. 17.
    Y. Sheng and P. S. Nicholson, J. Mater. Sci. 23 (1988) 982.CrossRefGoogle Scholar
  18. 18.
    H. Engstrom, J. B. Bates, W. E. Brundage and J. C. Wang, Solid State Ionics 2 (1981) 265.CrossRefGoogle Scholar
  19. 19.
    J. D. Hodge, J. Amer. Ceram. Soc. 67 (1984) 183.CrossRefGoogle Scholar
  20. 20.
    J. R. Macdonald, “Impedance Spectroscopy: Emphasizing Solid Materials and Systems” (Wiley, New York, 1987).Google Scholar
  21. 21.
    J. C. Wang, Phys. Rev. B 26 (1982) 5911.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. M. Park
    • 1
    • 2
  • E. E. Hellstrom
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Materials EngineeringHankuk Aviation UniversityKyonggi-DoKorea

Personalised recommendations