Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2401–2405 | Cite as

Viscoelasticity of ceramics at high temperatures

  • H. Peterlik
Papers

Abstract

The dependence of the fracture toughness, KIC, on the loading rate has been calculated. On the basis of linear elastic fracture mechanics (LEFM) a strong dependence of the fracture toughness on the loading rate is obtained if subcritical crack growth is taken into account. If the subcritical crack growth parameters n and B are sufficiently small, which correspond to a high velocity of crack extension, the fracture toughness should decrease at lower loading rates. This behaviour is similar to the well-known decrease of bending strength. The experimental results for alumina containing glassy phase as a model material, however, show a maximum in a certain regime of loading rates. A model is established, which combines LEFM and the viscoelasticity, and leads to a maximum of KIC at a certain loading rate dependent on the viscosity of the glassy phase.

Keywords

Polymer Alumina Viscosity Fracture Toughness Fracture Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Munz, G. Himsolt and J. Eschweiler, “Fracture Mechanics Methods for Ceramic, Rocks and Concrete”, ASTM STP 745 (American Society for Testing and Materials, Philadelphia, PA, 1981) pp. 69–84.CrossRefGoogle Scholar
  2. 2.
    K. Kromp and R. F. Pabst, Metal Sci. 3 (1981) 125.CrossRefGoogle Scholar
  3. 3.
    G. Popp, PhD thesis, University of Stuttgart, FRG (1982).Google Scholar
  4. 4.
    J. Wang, P. A. Withey, C. B. Ponton and P. M. Marquis, J. Mater. Sci. Lett. 11 (1992) 1201.CrossRefGoogle Scholar
  5. 5.
    European prestandard ENV 820-1.Google Scholar
  6. 6.
    DIN-standardization proposal 51110, parts 2 and 3.Google Scholar
  7. 7.
    Y. Murakami, “Stress intensity factors handbook”, Vol. I (Pergamon Press, Oxford 1987).Google Scholar
  8. 8.
    H. Peterlik and K. Kromp, J. Mater. Sci., 28 (1993) 4341.CrossRefGoogle Scholar
  9. 9.
    C. Rief and K. Kromp, Int. J. High Technol. Ceram. 4 (1988) 301.CrossRefGoogle Scholar
  10. 10.
    R. L. Tsai and R. Raj, Acta Metall. 30 (1982) 1043.CrossRefGoogle Scholar
  11. 11.
    H. Wieninger, K. Kromp and R. F. Pabst, J. Mater. Sci. 22 (1987) 1352.CrossRefGoogle Scholar
  12. 12.
    M. S. Aslanova, V. A. Chernov and L. F. Kulakov, Glass Ceram. 31 (1974) 409.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Peterlik
    • 1
  1. 1.Institute of Solid State PhysicsUniversity of ViennaViennaAustria

Personalised recommendations