Journal of Materials Science

, Volume 29, Issue 9, pp 2389–2394 | Cite as

Oxide film formation on aluminium nitride substrates covered with thin aluminium layers

  • D. A. Robinson
  • G. Yin
  • R. Dieckmann


The growth of oxide films on aluminium nitride substrates covered by vapour-deposited aluminium films of 1.5 and 4 μm thickness has been studied in air at atmospheric pressure as a function of temperature. Oxide films were grown by oxidation in air at temperatures between 800 and 1300°C. The kinetics of the growth of oxide films on such substrates was observed to be complex. In particular, there are three subsequent periods of observed oxide growth: (1) an initial period of rapid oxide growth, (2) an incubation period with very slow oxide growth, and (3) a second period of relatively fast oxide growth.


Nitride Oxide Film Initial Period Film Formation Aluminium Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Rice, J. H. Enloe, J. W. Lau, E. Y. Luh and L. E. Dolhert, Ceram, Bull. 71 (1992) 751.Google Scholar
  2. 2.
    N. Iwase, K. Anzai and K. Shinozaki, Solid State Technol. 29 (10) (1986) 135.Google Scholar
  3. 3.
    L. M. Sheppard, (ed.), Ceram. Bull. 69 (1990) 1801.Google Scholar
  4. 4.
    F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, IEEE Trans. Compon. Hybrids. Manuf. Technol. 13 (1990) 313.CrossRefGoogle Scholar
  5. 5.
    G. A. Slack, R. A. Tanzill, R. O. Pohl and J. W. Vandersande, J. Phys. Chem. Solids 48 (1987) 641.CrossRefGoogle Scholar
  6. 6.
    G. A. Slack, ibid. 34 (1973) 321.CrossRefGoogle Scholar
  7. 7.
    A. V. Virkar, T. B. Jackson and R. A. Cutler, J. Am. Ceram. Soc. 72 (1989) 2031.CrossRefGoogle Scholar
  8. 8.
    D. A. Robinson and R. Dieckmann, J. Mater. Sci., in press.Google Scholar
  9. 9.
    W. Thiele, Aluminium 38 (1962) 707 (in German).Google Scholar
  10. 10.
    Idem, ibid. 38 (1962) 780 (in German).Google Scholar
  11. 11.
    C. N. Cochran, D. L. Belitskus and D. L. Kinosz, Metall. Trans. 8B (1977) 323.CrossRefGoogle Scholar
  12. 12.
    C. Garcia-Cordovilla, E. Louis and A. Pamies, J. Mater. Sci. 21 (1986) 2787.CrossRefGoogle Scholar
  13. 13.
    E. Bergsmark, C. J. Simensen and P. Kofstad, Mater. Sci. Eng. A120 (1989) 91.CrossRefGoogle Scholar
  14. 14.
    F. A. Kröger, Solid State Ionics 12 (1984) 189.CrossRefGoogle Scholar
  15. 15.
    M. Billy, J. Jarrige, J. P. Lecompte, J. Mexmain and S. Yefsah, Rev. Chim. Miner. 19 (1982) 673 (in French).Google Scholar
  16. 16.
    V. A. Lavrenko and A. F. Alexeev, Ceram. Int. 9 (3) (1983) 80.CrossRefGoogle Scholar
  17. 17.
    A. D. Katnani and K. I. Papathomas, J. Vac. Sci. Technol. A5 (1987) 1335.CrossRefGoogle Scholar
  18. 18.
    D. Suryanarayana, J. Am. Ceram. Soc. 73 (1990) 1108.CrossRefGoogle Scholar
  19. 19.
    F. A. Cotton, “Advanced Inorganic Chemistry”, 5th Edn (Wiley, New York, 1988)Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • D. A. Robinson
    • 1
  • G. Yin
    • 1
  • R. Dieckmann
    • 1
  1. 1.Department of Materials Science and Engineering, Bard HallCornell UniversityIthacaUSA

Personalised recommendations