Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2378–2388 | Cite as

The preparation of alumina fibre by sol-gel processing

  • Y. H. Chiou
  • M. T. Tsai
  • H. C. Shih
Papers

Abstract

Attempts have been made to prepare alumina fibre from the colloidal sol and polymerized alkoxides. The aluminium chloride or aluminium nitrate systems were found to be potential methods for producing continuous alumina fibre: the aluminium nitrate system had a better sintering behaviour than the aluminium chloride system. The aluminium isopropoxide system, however, was unsuitable for preparing alumina fibre but was suitable for the preparation of monoliths, membranes, powders, and multicomponent ceramics. The thermal changes of these precursors were studied by transmission electron microscopy, Fourier-transform infrared spectroscopy and X-ray diffraction. The results demonstrated the different routes of phase transformation as the temperature increases. The aluminium chloride system exhibits two routes for phase transformation: (a) boehmite → γ → δ → θ → α-Al2O3, and (b) gibbsite → χ → κ → α-Al2O3.

Keywords

Transmission Electron Microscopy Phase Transformation Alkoxide Aluminium Chloride Boehmite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Watt and B. V. Perov, “Handbook of Composites”, Vol. 1 North-Holland, Amsterdam, (1985) p. 117.Google Scholar
  2. 2.
    M. H. Stacey, Br. Ceram. Trans. J. 87 (1988) 168.Google Scholar
  3. 3.
    D. J. Pysher, K. C. Goretta, R. S. Hodder and R. E. Tressler, J. Am. Ceram. Soc. 72 (1989) 284.CrossRefGoogle Scholar
  4. 4.
    F. Folgar, W. H. Kruger and J. G. Goree, NASA Conference Publication 2357, (1984) p. 43.Google Scholar
  5. 5.
    J. Z. Blaze Jr, US Pat. 3322865 (1967).Google Scholar
  6. 6.
    J. M. Boulton, K. Jones and H. G. Emblem, J. Mater. Sci. 24 (1989) 979.CrossRefGoogle Scholar
  7. 7.
    T. Yogo and H. Iwahara, ibid. 26 (1991) 5292.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid. 27 (1992) 1499.CrossRefGoogle Scholar
  9. 9.
    L. L. Hench and D. R. Ulrich, Ultrastruct. Process. Ceram. glasses and Compos. (1983) p. 15.Google Scholar
  10. 10.
    Colomba, Ceram. Int. 15 (1989) 23.CrossRefGoogle Scholar
  11. 11.
    T. Maki and S. Sakka, J. Non-Cryst. Solids 100 (1988) 303.CrossRefGoogle Scholar
  12. 12.
    K. Kamiya and T. Yoko, J. Mater. Sci. 21 (1986) 842.CrossRefGoogle Scholar
  13. 13.
    S. Sakka and K. Kamiya, J. Non-Cryst. Solids 42 (1980) 403.CrossRefGoogle Scholar
  14. 14.
    T. Okubo, M. Watanabe, K. Kusakabe and S. Morooka, J. Mater. Sci. 25 (1990) 4822.CrossRefGoogle Scholar
  15. 15.
    B. E. Yoldas, Am. Ceram. Soc. Bull. 54 (1975) 289.Google Scholar
  16. 16.
    L. D. Frederickson Jr, Anal. Chem. 26 (1954) 1883.CrossRefGoogle Scholar
  17. 17.
    W. H. Gitzen, Am. Ceram. Soc. Spec. Pub. 4 (1970) 125.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Y. H. Chiou
    • 1
  • M. T. Tsai
    • 1
  • H. C. Shih
    • 1
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations