Journal of Materials Science

, Volume 29, Issue 9, pp 2367–2372 | Cite as

Describing non-Fickian water-vapour sorption in wood

  • L. Wadsö


Moisture transport and sorption in wood may not be accurately described by Fick's law of diffusion. The problem of making a model of non-Fickian behaviour (NFB) for wood is discussed. Some measurements in which NFB in wood is clearly seen are also reviewed. Four criteria, which must be satisfied by a model describing sorption in wood cell walls, are presented: (1) the model should not only describe the response to step changes in vapour pressure; (2) it should be able to predict sorption with more than one time scale; (3) the sorption rate should not depend on the thickness of the cell wall; (4) small rapid changes in vapour pressure should give slower fractional weight change than large rapid changes. A review of models of NFB in synthetic polymers indicates that there is presently no model of NFB which fulfills the above criteria. More measurements of the sorption behaviour of the cell wall are needed to construct such a model for wood. This model can then probably be used, together with a Fickian diffusion model, to model the sorption behaviour of whole wood.


Cell Wall Vapour Pressure Material Processing Weight Change Diffusion Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



concentration in a material kg m−3


diffusivity with c as potential m2 s−1


diffusivity with p as potential kg/(m s Pa)


flux kgm−2−1


partial vapour pressure Pa


time s


distance m


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fick, Ann. Phys. Chem. 94 (1855) 59.CrossRefGoogle Scholar
  2. 2.
    F. A. Long and D. Richman, J. Am. Chem. Soc. 82 (1960) 513.CrossRefGoogle Scholar
  3. 3.
    A. Kishimoto, H. Fujita, H. Odani, M. Kurata and M. Tamura, J. Phys. Chem. 64 (1960) 594.CrossRefGoogle Scholar
  4. 4.
    H. Fujita, Fortsch. Hochpolym.-Forsch. 3 (1961) 1.CrossRefGoogle Scholar
  5. 5.
    G. N. Christensen, Appita 13 (1959) 112.Google Scholar
  6. 6.
    G. N. Christensen and K. E. Kelsey, Holz als Rohund Werkstoff 17 (1959) 178.CrossRefGoogle Scholar
  7. 7.
    G. N. Christensen, in “Humidity and Moisture”, Vol. 4, edited by A. Wexler (Reinhold, New York, 1965) p. 279Google Scholar
  8. 8.
    G. L. Comstock, Forest Prod. J. March (1963) 96.Google Scholar
  9. 9.
    M. W. Kelly and C. A. Hart, Wood Fiber 1 (1970) 270.Google Scholar
  10. 10.
    C. Skaar, C. Prichananda and R. W. Davidson, Wood Sci. 2 (1970) 179.Google Scholar
  11. 11.
    L. Wadsö, Wood Sci. Technol. 27 (1994) 296.Google Scholar
  12. 12.
    Idem, Wood Fiber Sci. (in press, 1994)Google Scholar
  13. 13.
    J. Villadsen, K. K. Hansen and L. Wadsö, in “Building Physics in the Nordic Countries '93”, Part 2, edited by B. Saxhof (Thermal Insulation Laboratory, Technical University of Denmark, 1993) p. 685.Google Scholar
  14. 14.
    J. Arfvidsson and J. Claesson, in “International Centre for Heat and Mass Transfer (ICHMT) Symposium”, September 1989, Dubrovnik, Yugoslovia, edited by Chadwick.Google Scholar
  15. 15.
    D. G. Hunt, J. Mater. Sci. 25 (1990) 3671.CrossRefGoogle Scholar
  16. 16.
    J. Van Brakel, Adv. Drying 1 (1980) 217.Google Scholar
  17. 17.
    H. L. Frisch, Polym. Eng. Sci. 20 (1980) 2.CrossRefGoogle Scholar
  18. 18.
    J. Crank and G.S. Park, Trans. Faraday Soc. 47 (1951) 1072.CrossRefGoogle Scholar
  19. 19.
    A. Kishimoto, Prog. Org. Coatings 1 (1972) 91.CrossRefGoogle Scholar
  20. 20.
    H. L. Frisch J. Chem. Phys. 41 (1964) 3679.CrossRefGoogle Scholar
  21. 21.
    J. Crank, J. Polym. Sci. 11 (1953) 151.CrossRefGoogle Scholar
  22. 22.
    A. C. Newns, Trans. Faraday Soc. 52 (1956) 1533.CrossRefGoogle Scholar
  23. 23.
    J. H. Petropoulos and P. P. Roussis, in “Permeability of Plastic Films and Coatings to Gases, Vapors and Liquids”, edited by H. B. Hopfenberg (Plenum Press, New York, 1974) p. 219.CrossRefGoogle Scholar
  24. 24.
    Idem, J. Membrane Sci. 3 (1978) 343.CrossRefGoogle Scholar
  25. 25.
    S. Joshi and G. Astarita, Polymer 20 (1979) 455.CrossRefGoogle Scholar
  26. 26.
    G. Astarita and J. H. Meldon, Latin Am. Appl. Res. 20 (1990) 5.Google Scholar
  27. 27.
    N. S. Kalospiros, R. Ocone, G. Astarita and J. H. Meldon, Ind. Eng. Chem. Res. 30 (1991) 851.CrossRefGoogle Scholar
  28. 28.
    W. R. Vieth and K. J. Sladek, J. Colloid Sci. 20 (1965) 1014.CrossRefGoogle Scholar
  29. 29.
    W. R. Vieth and M. A. Amini, in “Permeability of Plastic Films and Coatings to Gases, Vapors and Liquids”, edited by H. B. Hopfenberg (Plenum Press, New York, 1974) p. 49.CrossRefGoogle Scholar
  30. 30.
    J. Sax and J. M. Ottino, Polym. Eng. Sci. 23 (1983) 165.CrossRefGoogle Scholar
  31. 31.
    J. M. Ottino and N. Shah, ibid. 24 (1984) 153.CrossRefGoogle Scholar
  32. 32.
    N. Shah, J. E. Sax and J. M. Ottino, Polymer 26 (1985) 1239.CrossRefGoogle Scholar
  33. 33.
    N. Shah, J. M. Ottino, Chem. Eng. Sci. 41 (1986) 283.CrossRefGoogle Scholar
  34. 34.
    A. R. Berens and H. B. Hopfenberger, Polymer 19 (1978) 489.CrossRefGoogle Scholar
  35. 35.
    Idem 17 (1979) 1757.CrossRefGoogle Scholar
  36. 36.
    H. L. Frisch, T. T. Wang and T. K. Kwei, J. Polym. Sci. A-2 7 (1969) 879.CrossRefGoogle Scholar
  37. 37.
    T. T. Wang, T. K. Kwei and H. L. Frisch, ibid. 7 (1969) 2019.CrossRefGoogle Scholar
  38. 38.
    T. K. Kwei and T. T. Wang, in “Permeability of Plastic Films and Coatings to Gases, Vapors and Liquids”, edited by H. B. Hopfenberg (Plenum Press, New York, 1974) p. 63.CrossRefGoogle Scholar
  39. 39.
    A. Peterlin, Polym. Lett. 3 (1965) 1083.CrossRefGoogle Scholar
  40. 40.
    Idem, Makromol. Chem. 124 (1969) 136.CrossRefGoogle Scholar
  41. 41.
    Idem, J. Res. Nat. Bur. Stand. (A) 81 (1977) 243.CrossRefGoogle Scholar
  42. 42.
    Idem, J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 1741.CrossRefGoogle Scholar
  43. 43.
    G. Astarita and G. C. Sarti, Polym. Eng. Sci. 18 (1978) 388.CrossRefGoogle Scholar
  44. 44.
    D. J. Enscore, H. B. Hopfenberg and V. T. Stannett, Polymer 18 (1977) 793.CrossRefGoogle Scholar
  45. 45.
    G. Sarti, ibid. 20 (1979) 827.CrossRefGoogle Scholar
  46. 46.
    N. L. Thomas and A. H. Windle, ibid. 21 (1980) 613.CrossRefGoogle Scholar
  47. 47.
    Idem. ibid., 23 (1982) 529.CrossRefGoogle Scholar
  48. 48.
    Y. O. Tu, Qt. Appl. Math. July (1977) 269.Google Scholar
  49. 49.
    Y. O. Tu, and A. C. Ouano, IBM J. Res. Develop. March (1977) 131.Google Scholar
  50. 50.
    T. Alfrey, E. F. Gurnee and W. G. Lloyd, J. Polym. Sci. 12 (1966) 249.Google Scholar
  51. 51.
    T. Sadoh, J. Jpn Wood Res. Soc. 6 (1960) 219.Google Scholar
  52. 52.
    I.K. Walker, New Zealand J. Sci. 20 (1977) 3.Google Scholar
  53. 53.
    L. Wadsö, in “Proceedings of Drying '92”, Montreal, August 1992, edited by A. Mujumdar (Elsevier, Amsterdam, 1992) Part B, p. 1145.Google Scholar
  54. 54.
    A. J. Stamm and R. M. Nelson, Forest Prod. J. November (1961) 536.Google Scholar
  55. 55.
    E. T. Choong, ibid. January (1965) 21.Google Scholar
  56. 56.
    Y. Lescanne, C. Moyne and P. Perre, in “Proceedings of Drying '92”, Montreal, August 1992, edited by A. Mujumdar (Elsevier, Amsterdam, 1992) Part B, p. 1017.Google Scholar
  57. 57.
    G. N. Christensen and K. E. Kelsey, Holz als Rohund Werkstoff 17 (1959) 189.CrossRefGoogle Scholar
  58. 58.
    L. Salmén, in “Properties of Ionic Polymers; Natural and Synthetic” edited by L. Salmén and M. Htun (Swedish Pulp and Paper Research Institute, STFI, Stockholm, 1991) p. 285.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. Wadsö
    • 1
  1. 1.Building MaterialLund UniversityLundSweden

Personalised recommendations