Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2350–2358 | Cite as

Micromechanical deformations in particulate filled thermoplastics: volume strain measurements

  • B. Pukánszky
  • M. Van Es
  • F. H. J. Maurer
  • G. Vörös
Papers

Abstract

Volume strain measurements were carried out on PP composites containing different CaCO3 fillers. During deformation, a volume increase was detected which could be divided into two linear sections as a function of elongation. Comparison of data with existing theories has shown that in the first part, mostly elastic deformation takes place and the slope can be related to the Poisson's ratio of the composite. Scanning electron microscopy revealed that in the second stage, the dominating micromechanical deformation process is debonding. Void formation is initiated at a certain stress which approximately corresponds to the yield stress of the composites, but data in the literature and model calculations indicate that separation of the matrix/filler interface may start at lower stresses. Initiation stress depends on the particle size of the filler and on interfacial interactions. The rate of volume increase has non-linear dependence on the volume fraction of the filler. Volume strain measurements reflect micromechanical deformations well, but further study is needed to explain contradictions between experimental results and theoretical predictions.

Keywords

Polymer Particle Size Model Calculation CaCO3 Theoretical Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).CrossRefGoogle Scholar
  2. 2.
    A. J. Kinloch and R. J. Young, “Fracture Behaviour of Polymers” (Elsevier, London, 1983).Google Scholar
  3. 3.
    P. H. T. Vollenberg, PhD Thesis, University of Eindhoven, 1987.Google Scholar
  4. 4.
    B. Pukánszky and G. Vörös, Compos. Interfaces 1 (1993) 411.Google Scholar
  5. 5.
    H. Breuer, NATO ASI Ser. E 89 (1985) 375.Google Scholar
  6. 6.
    Idem. Ibid. 89 (1985) 383.Google Scholar
  7. 7.
    W. J. Coumans and D. Heikens, Polymer 21 (1980) 957.CrossRefGoogle Scholar
  8. 8.
    V. P. Chacko, R. J. Farris and F. E. Karasz, J. Appl. Polym. Sci. 28 (1983) 2701.CrossRefGoogle Scholar
  9. 9.
    E. A. A. Hartingsveldt, PhD Thesis, Technical University of Delft, 1987.Google Scholar
  10. 10.
    B. Turcsányi, B. Pukánszky and F. Tüdós, J. Mater. Sci. Lett. 7 (1988) 160.CrossRefGoogle Scholar
  11. 11.
    B. Pukánszky, B. Turcsányi and F. Tüdós, in “Interfaces in Polymer, Ceramic and Metal Matrix Composites”, edited by H. Ishida (Elsevier, New York, 1988) p. 467.Google Scholar
  12. 12.
    B. Pukánszky, K. Belina, A. Rockenbauer and F. H. J. Maurer, Composites (in press).Google Scholar
  13. 13.
    P. H. T. Vollenberg and D. Heikens, J. Mater. Sci. 25 (1990) 3089.CrossRefGoogle Scholar
  14. 14.
    N. J. Goodier, J. Appl. Mech. 55 (1933) 39.Google Scholar
  15. 15.
    R. J. Farris and R. Falabella, Sagamore Army Materials Research Conference Proceedings, Vol 32 (1987) 199.Google Scholar
  16. 16.
    S. D. Sjoerdsma, PhD Thesis, Eindhoven University of Technology, 1981.Google Scholar
  17. 17.
    C. B. Bucknall, Adv. Polym. Sci. 27 (1987) 121.CrossRefGoogle Scholar
  18. 18.
    C. B. Bucknall, in “Polymer Blends”, edited by D. R. Paul and S. Newman Academic Press, New York, 1978 p. 91.CrossRefGoogle Scholar
  19. 19.
    R. J. Farris, Trans. Soc. Rheol. 12 (1968) 315.CrossRefGoogle Scholar
  20. 20.
    P. Vollenberg, D. Heikens and H. C. B. Ladan, Polym. Compos. 9 (1988) 382.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • B. Pukánszky
    • 1
  • M. Van Es
    • 2
  • F. H. J. Maurer
    • 2
  • G. Vörös
    • 3
  1. 1.Central Research Institute for ChemistryHungarian Academy of SciencesBudapestHungary
  2. 2.DSM Research BVMD GeleenThe Netherlands
  3. 3.Institute for General PhysicsEötvös University BudapestBudapestHungary

Personalised recommendations