Journal of Materials Science

, Volume 29, Issue 9, pp 2341–2344 | Cite as

Evaluation of the true activation enthalpy of superplastic flow including a threshold stress

  • N. Q. Chinh
  • P. Tasnádi
  • A. Juhász
  • I. Kovács
  • E. Kovács-Csetényi


A new method is suggested for the evaluation of the true activation enthalpy for alloys where the strain rate of the superplastic flow varies with a power of an effective stress σe = σ-σo, where σ and σo are the applied stress and a threshold stress, respectively. Some earlier results concerning superplastic AlMgZnCu alloys containing chromium and in which a strongly temperature-dependent threshold stress can be revealed, are reanalysed. The results are in good agreement with the previous ones. It has been shown further that for the alloys investigated the true activation energy increases with increasing chromium content.


Polymer Chromium Enthalpy Activation Energy Early Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. G. Langdon, Met. Trans. 13A (1982) 689.CrossRefGoogle Scholar
  2. 2.
    B. P. Kashyap, A. Arieli and A. K. Mukherjee, J. Mater. Sci, 20 (1986) 2661.CrossRefGoogle Scholar
  3. 3.
    O. D. Sherby, ISIJ Int. 29 (1989) 698.CrossRefGoogle Scholar
  4. 4.
    F. A. Mohamed, S. A. Shei and T. G. Langdon, Acta Metall. 23 (1975) 1443.CrossRefGoogle Scholar
  5. 5.
    T. G. Langdon, Mater. Sci. Eng. A137 (1991) 1.CrossRefGoogle Scholar
  6. 6.
    F. A. Mohamed, J. Mater. Sci. 18 (1983) 582.CrossRefGoogle Scholar
  7. 7.
    Idem J. Mater. Sci. Lett. 7 (1988) 215.CrossRefGoogle Scholar
  8. 8.
    P. K. Chaudhury, V. Sivaramakrishnan and F. A. Mohamed, Metall. Trans. 19A (1988) 2741.CrossRefGoogle Scholar
  9. 9.
    B. Burton, “Diffusional Creep of Polycrystalline Materials”, Diffusion and Defect Monograph Series (Trans. Tech., Switzerland. 1977) p. 73.CrossRefGoogle Scholar
  10. 10.
    N. Q. Chinh, A. Juhász, P. Tasnádi and I. Kovács, J. Mater. Sci. 25 (1990) 4767.CrossRefGoogle Scholar
  11. 11.
    P. Malek, Mater. Sci. Eng. A137 (1991) 21.CrossRefGoogle Scholar
  12. 12.
    G. S. Murty and M. J. Koczak, ibid. 96 (1987) 117.CrossRefGoogle Scholar
  13. 13.
    H. Westengen, O. Reiso and L. Auran, Aluminium (1981) 768.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. Q. Chinh
    • 1
  • P. Tasnádi
    • 1
  • A. Juhász
    • 1
  • I. Kovács
    • 1
  • E. Kovács-Csetényi
    • 2
  1. 1.Institute for General PhysicsEötvös UniversityBudapestHungary
  2. 2.Hungalu Engineering and Development LtdBudapestHungary

Personalised recommendations