Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2335–2340 | Cite as

R curves for energy dissipative materials

Papers

Abstract

This paper focuses on the theoretical simulation of fracture and stable crack growth of specimens with non-local damage. The first law of thermodynamics allows the identification or definition of appropriate crack-driving forces. The results are compared with recent ideas on defining tearing resistance for uncontained yield through the energy dissipation rate. A hypothesis regarding the conversion of mechanical into thermal energies within the non-local damage region is formulated to model the fracture behaviour of energy dissipative materials with rising crack resistance characteristics. The material's capacity to develop non-local damage is assumed to decrease with the actual damage level. This decrease relates linearly with the remaining resources of the material in dissipating energy. The hypothesis, which proposes a square root function for theoretical J-R curves, is verified by the regression analysis of experimental data regarding a European round-robin test of different steels.

Keywords

Energy Dissipation Thermal Energy Dissipation Rate Fracture Behaviour Damage Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Tvergaard and A. Needleman, Acta Metall. 32 (1984) 157.CrossRefGoogle Scholar
  2. 2.
    P. J. Budden, and M. R. Jones, Fatigue Fract. Engng. Mater. Struct. 14 (1991) 469.CrossRefGoogle Scholar
  3. 3.
    P. Will, Fortschrittberichte VDI Reihe 18 (1988) 56.Google Scholar
  4. 4.
    C. E. Turner, in: “Post-yield Fracture Mechanics”, edited by D. G. H. Latzko, C. E. Turner, J. D. Landes, D. E. McCabe and T. K. Hellen, (Elsevier, Barking, 1984) p. 25.Google Scholar
  5. 5.
    S. Aoki, K. Kishimoto, M. Sakata, J. Appl. Mech. 48 (1981) 825.CrossRefGoogle Scholar
  6. 6.
    O. Kolednik, ESIS Newsletter No. 20 (1992/93) 12.Google Scholar
  7. 7.
    C. E. Turner, ESIS Newsletter No. 19 (1992) 10.Google Scholar
  8. 8.
    T. L. Anderson, “Fracture Mechanics” (CRC Press, Boca Raton, 1991).Google Scholar
  9. 9.
    M. Sakai, J. I. Yoshimura, Y. Goto, M. Inagaki, J. Amer. Ceram. Soc. 71 (1988) 609.CrossRefGoogle Scholar
  10. 10.
    C. L. Chow and T. J. Lu, Int. J. Fract. 50 (1991) 79.CrossRefGoogle Scholar
  11. 11.
    R. N. Stevens, F. Guiu, Proc. R. Soc. Lond. A435 (1991) 169.CrossRefGoogle Scholar
  12. 12.
    M. F. Mecklenburg, J. A. Joyce, P. Albrecht, in “Nonlinear fracture mechanics” Vol. II, “Elastic-plastic fracture”, edited by J. D. Landes, A. Saxena and J. G. Merkle (ASTM STP 995, 1989) 594.Google Scholar
  13. 13.
    M. L. Braga, PhD thesis, Faculty of Engineering, Imperial College, University of London, 1992.Google Scholar
  14. 14.
    D. B. Marshall, M. V. Swain, J. Amer. Ceram. Soc. 71 (1988) 399.CrossRefGoogle Scholar
  15. 15.
    P. Will, B. Michel, P. Kuntzsch, cfiBer./DKG 70 (1993) 23.Google Scholar
  16. 16.
    P. Will, Fortschrittsberichte der DKG 3 (1992) 133.Google Scholar
  17. 17.
    B. Hayes, et al. Final report of a European round-robin, TWI Report No. 8029/6/90, The Welding Institute, Abington, 1990.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. Will
    • 1
  1. 1.Department of Electrical EngineeringCollege for Technology and EconomicsMittweidaGermany

Personalised recommendations