Journal of Materials Science

, Volume 29, Issue 9, pp 2321–2327 | Cite as

Fracture characteristics of a particulate-reinforced metal matrix composite

  • M. J. Hadianfard
  • J. Healy
  • Y. -W. Mai


The effect of particulates on the failure mechanism of an Al-Mg-Si alloy 6061 with 20% angular alumina particles was studied. Fracture toughness tests were conducted on compact tension peak-aged specimens. The interaction of the reinforcement phase with the crack was investigated by optical microscopy and scanning electron microscopy, both on the surface and in the mid-thickness of the fractured specimen. It is shown that the fractured particles ahead of the crack tip, in particular the larger particles, play an important role in the void-initiation phase of the fracture process. Particle size and aspect ratio determine the likelihood of fracture. Some differences in the failure mechanisms have been observed between the mid-thickness and the surface of the specimen because of the difference between plane strain and plane stress fractures.


Fracture Toughness Failure Mechanism Stress Fracture Metal Matrix Composite Alumina Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Divechan, S. G. Fishman and S. D. Karmarkar, J. Metals 33 (1981) 12.Google Scholar
  2. 2.
    R. J. Arsenault, Mater. Sci. Eng. 64 (1984) 171.CrossRefGoogle Scholar
  3. 3.
    D. L. McDanels, Metall. Trans. 16 A (1985) 1105.CrossRefGoogle Scholar
  4. 4.
    D. L. Davidson, ibid. 18 (1987) 2115.CrossRefGoogle Scholar
  5. 5.
    Y. Flom and R. J. Arsenault, Acta Metall. 37 (1989) 2413.CrossRefGoogle Scholar
  6. 6.
    T. G. Nieh, J. Wadsworth and D. J. Chellmann, Scripta Metall. 19 (1985) 181.CrossRefGoogle Scholar
  7. 7.
    S. R. Nutt and A. Needleman, Scripta Metall. 21 (1987) 705.CrossRefGoogle Scholar
  8. 8.
    J. P. Lucas, P. K. Liaw and J. J. Stephens, in “Morris E. Fine Symposium”, Detroit, Michigan, October, 1990. (The Minerals, Metals and Materials Society, 1991) p. 171.Google Scholar
  9. 9.
    M. Manoharan and J. J. Lewandowski, Scripta Metall. 23 (1988) 1801.CrossRefGoogle Scholar
  10. 10.
    C. Zener, “Fracturing of Metals” (ASM, Cleveland, OH, 1948) p. 3.Google Scholar
  11. 11.
    T. B. Cox and J. R. Low, Metall. Trans. 5 (1974) 1457.CrossRefGoogle Scholar
  12. 12.
    D. L. Davidson, in “Metal Matrix Composites Mechanisms and Properties”, edited by R. K. Everett and R. J. Arsenault, (Academic Press, Boston, 1991) p. 217.Google Scholar
  13. 13.
    R. H. Vanstone, R. H. Merchant and J. R. Low, ASTM STP 556 (American Society for Testing and Materials, Philadelphia, PA, 1974) p. 93.Google Scholar
  14. 14.
    D. Broek, Eng. Fract. Mech. 5 (1973) 55.CrossRefGoogle Scholar
  15. 15.
    F. M. McClintok, Int. J. Fract. Mech. 2 (1966) 614.Google Scholar
  16. 16.
    A. R. Rosenfield and B. S. Majumdar, Metall. Trans. 18 A (1987) 1053.CrossRefGoogle Scholar
  17. 17.
    Y. W. Mai and B. R. Lawn, J. Am. Ceram. Soc. 70 (1987) 289.CrossRefGoogle Scholar
  18. 18.
    J. K. Shang and R. O. Ritchie, Metall. Trans. 20 A (1989) 897.CrossRefGoogle Scholar
  19. 19.
    T. Lyman, “Metal Handbook”, Vol. 1, 8th Edn. (American Society for Metals, Metal Park, OH, 1961) p. 964.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. J. Hadianfard
    • 1
  • J. Healy
    • 1
  • Y. -W. Mai
    • 1
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical EngineeringUniversity of SydneyAustralia

Personalised recommendations