Journal of Materials Science

, Volume 29, Issue 9, pp 2315–2320 | Cite as

Mechanical behaviour, percolation and damage of materials with viscous solid grain boundaries

  • M. C. Dang
  • B. Baudelet


The mechanical behaviour, percolation and damage mechanism of a aluminium alloy with viscous solid grain boundaries (GBs) at 465 °C have been characterized in experiments performed in tension or compression in the strain rate range of 10−5-10−2s−1. It was found that grain-boundary sliding (GBS) occurs as strain rates below 10−4s−1. It was shown that the viscous solid interphase migrates during the process of deformation. In the case of tension, it was squeezed out of GBs parallel with the tension axis into GBs perpendicular to the axis and vice versa in the case of compression. This local percolation is discussed in terms of the viscosity of the interphase, gradient of local stresses and percolation time. The viscosity of the solid interphase is estimated. It was also found that cavitation depends on the type of stress (tension or compression) and the strain rate. Cavity nucleation occurs at multiple points when GBS happens or along G B facets in the absence of GBS. Cavity growth takes place along GBs at high normal stresses and the cavity coalsescence leads to “saw-tooth” fracture.


Polymer Aluminium Viscosity Aluminium Alloy Cavitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Vaandrager and G. M. Pharr, Scripta Metall. 18 (1984) 1337.CrossRefGoogle Scholar
  2. 2.
    Idem, Acta Metall. 37 (1989) 1057.CrossRefGoogle Scholar
  3. 3.
    G. M. Pharr, P. S. Godavarti and B. L. Vaandrager, J. Mater. Sci. 24 (1989) 784.CrossRefGoogle Scholar
  4. 4.
    B. Baudelet, M. C. Dang and F. Bordeaux, Scripta Metall. Mater. 26 (1992) 573.CrossRefGoogle Scholar
  5. 5.
    F. Bordeaux, M. C. Dang and B. Baudelet, J. Mater. Sci. in press.Google Scholar
  6. 6.
    M. C. Roth, G. C. Weatherly and W. A. Miller, Acta Metall. 28 (1980) 841.CrossRefGoogle Scholar
  7. 7.
    D. D. Petrovic, G. C. Weatherly and W. A. Miller, ibid. 36 (1988) 2249.Google Scholar
  8. 8.
    A. Wolfenden and W. H. Robinson, ibid. 25 (1977) 823.CrossRefGoogle Scholar
  9. 9.
    D. Webster, Metall. Trans. A18 (1987) 2181.CrossRefGoogle Scholar
  10. 10.
    M. F. Weill, Ph D Thesis, Université Pierre et Marie Curie Paris VI (1979).Google Scholar
  11. 11.
    Y. S. Nechaev, Coll. Physique Cl 51 (Suppl. to No. 1) (1990) 287.Google Scholar
  12. 12.
    K. H. Chan, J. Lankford and R. A. Page, Acta Metall. 32 (1984) 1907.CrossRefGoogle Scholar
  13. 13.
    P. K. Talty and R. A. Dirks, J. Mater. Sci. 13 (1978) 580.CrossRefGoogle Scholar
  14. 14.
    A. G. Evans and A. Rana, Acta Metall 28 (1980) 129.CrossRefGoogle Scholar
  15. 15.
    M. D. Thouless and A. G. Evans, ibid. 34 (1986) 23.CrossRefGoogle Scholar
  16. 16.
    F. F. Lange, B. I. Davis and D. R. Clarke, J. Mater. Sci. 15 (1980) 601.CrossRefGoogle Scholar
  17. 17.
    D. R. Clarke, ibid. 20 (1985) 1321.CrossRefGoogle Scholar
  18. 18.
    R. M. Arons and J. K. Tien, ibid. 15 (1980) 2046.CrossRefGoogle Scholar
  19. 19.
    R. Raj and C. K. Chyung, Acta Metall. 29 (1981) 159.CrossRefGoogle Scholar
  20. 20.
    R. Morrell and K. H. G. Ashbee, J. Mater. Sci. 8 (1973) 1253.CrossRefGoogle Scholar
  21. 21.
    J. E. Marion, A. G. Evans, M. D. Drory and D. R. Clarke, Acta Metall. 31 (1983) 1445.CrossRefGoogle Scholar
  22. 22.
    R. A. Page, D. J. Lankford and S. Spooner, ibid. 32 (1984) 1275.CrossRefGoogle Scholar
  23. 23.
    R. Raj, Coll. Physique 51 (1990) C1–393.Google Scholar
  24. 24.
    R. L. Tsai and R. Raj, Acta Metall. 30 (1982) 1043.CrossRefGoogle Scholar
  25. 25.
    G. M. Pharr, in “Ashby Symposium: The Modelling of Material Behavior and its Relation to Design”, edited by J. D. Embury and A. W. Thompson (TMS, London, 1990) p. 89.Google Scholar
  26. 26.
    T. G. Neih and J. Wadsworth, “High Strain Rate Super-plasticity in Metal Matrix Ceramics”, Internal Report (Lockheed, London, 1990).Google Scholar
  27. 27.
    O. D. Sherby and J. Wadsworth, Progr. Mater. Sci. 33 (1989) 169.CrossRefGoogle Scholar
  28. 28.
    R. S. Mishra and A. K. Mukherjee, Scripta Metall. 25 (1991) 271.CrossRefGoogle Scholar
  29. 29.
    G. M. Pharr and J. E. Merwin, Cold Reg. Sci. Technol. 11 (1985) 205.CrossRefGoogle Scholar
  30. 30.
    G. M. Pharr and P. S. Godavarti, ibid. 14 (1987) 273.CrossRefGoogle Scholar
  31. 31.
    M. S. Nixon and G. M. Pharr, J. Ener. Resour. Technol. 106 (1984) 344.CrossRefGoogle Scholar
  32. 32.
    P. Duval, in Proceeding of Conference on Isotopes and Impurities in Snow and Ice, Grenoble, August 1975 Publication No. 118 (IAHS, Grenoble, 1977) p. 29.Google Scholar
  33. 33.
    P. S. Godavarti and G. M. Pharr, J. Ener. Resour. Technol. 107 (1985) 173.CrossRefGoogle Scholar
  34. 34.
    L. Lliboutry, J. Glaciology 10 (1971) 15.CrossRefGoogle Scholar
  35. 35.
    T. Baykara and G. M. Pharr, Acta Metall. Mater. 39 (1991) 1141.CrossRefGoogle Scholar
  36. 36.
    G. M. Pharr and M. F. Ashby, Acta Metall. 31 (1983) 129.CrossRefGoogle Scholar
  37. 37.
    R. Sheikh and G. M. Pharr, Scripta Metall. 18 (1984) 837.CrossRefGoogle Scholar
  38. 38.
    Idem. Acta Metall. 33 (1985) 231.CrossRefGoogle Scholar
  39. 39.
    O. Reynolds, Phil. Mag. 20 (1885) 469.CrossRefGoogle Scholar
  40. 40.
    F. C. Frank, Rev. Geophys. 3 (1965) 485.CrossRefGoogle Scholar
  41. 41.
    S. M. Wiederhorn, B. J. Hockey, R. F. Krause Jr and K. Jakus, J. Mater. Sci. 21 (1986) 810.CrossRefGoogle Scholar
  42. 42.
    J. R. Porter, W. Blumenthal and A. G. Evans, Acta Metall. 29 (1981) 1899.CrossRefGoogle Scholar
  43. 43.
    M. D. Thouless and A. G. Evans, J. Amer. Ceram. Soc. 67 (1984) 721.CrossRefGoogle Scholar
  44. 44.
    J. Cadek, in “Creep in Metallic Materials” (Elsevier, Amsterdam, 1988) p. 279.Google Scholar
  45. 45.
    A. G. Evans, J. R. Rice and J. P. Hirth, J. Amer. Ceram. Soc. 63 (1980) 368.CrossRefGoogle Scholar
  46. 46.
    G. F. Carter, in “Metals Handbook: Mechanical, Physical and Chemical Properties of Metals”, edited by H. E. Boyer and T. L. Gall (American Society for Metals, Ohio, 1985) p. 2–19.Google Scholar
  47. 47.
    R. W. Evans and B. Wilshire, in “Creep of Metals and Alloys” edited by D. McLean (Institute of Metals, London, 1985) p. 51.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. C. Dang
    • 1
  • B. Baudelet
    • 1
  1. 1.Génie Physique et Mécanique des Matériaux, Unité Associée au CNRSInstitut National Polytechnique de Grenoble, ENSPGSaint Martin d'HèresFrance

Personalised recommendations