Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2304–2308 | Cite as

Effect of controlled crystallization on the chemical durability of a lead-containing waste glass

  • A. Dwivedi
  • Y. Berta
  • R. F. Speyer
Papers

Abstract

A favourable microstructure was tailored by controlled crystallization of a quenched glass made of a combination of metal industry slags and a lead bisilicate frit. The frit was used to simulate a lead-containing waste. In the devitrified glass microstructure, lead-rich glassy pockets were contained in an akermanite (Ca2MgSi2O7) crystalline matrix. Leaching of lead was reduced by a factor of two as a result of devitrification processing; the low-lead crystalline matrix protected the lead-rich pockets from chemical attack.

Keywords

Polymer Microstructure Crystallization Material Processing Metal Industry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Frick in “Hazardous Waste Management”, edited by J. J. Pierce and P. A. Vesilind (Ann Arbor Science) p. 9.Google Scholar
  2. 2.
    R. W. Regan, in “Hazardous and Toxic Wastes: Technology, Management, and Health Effects”, edited by S. K. Majumdar and E. W. Miller (The Pennsylvania Academy of Sciences) p. 2.Google Scholar
  3. 3.
    I. A. Sobolev, G. V. Makarchenko, S. V. Stefanovskii and F. A. Lifanov, Steklo i Kemanika 3 (1991) 8.Google Scholar
  4. 4.
    E. R. Vance, S. Urquhardt, D. Anderson and I. M. George, in “Advances in Ceramics”, Vol. 20: “Nuclear Waste Management II”, edited by D. E. Clark, W. B. White and A. J. Machiels (American Ceramic Society, Ohio. 1986) p. 249.Google Scholar
  5. 5.
    L. R. Bunnell, G. D. Maupin and K. H. Oma, ibid.in p. 167.Google Scholar
  6. 6.
    P. J. Haward, W. H. Hocking, S. L. Mitchell and M. A. Stanchell, Nucl. Chem. Waste Management 5 (1984) 27.CrossRefGoogle Scholar
  7. 7.
    G. Agarwal and R. F. Speyer, J. Miner. Metals Mater. Soc. 42 (1992) 32.CrossRefGoogle Scholar
  8. 8.
    W. Simpson, Glass Technol. 17 (1976) 35.Google Scholar
  9. 9.
    R. F. Speyer, “The Effects of Calumite Additions on the Fusion of Soda-Lime-Silicate Glass Batches”, (Calumite Company, Boca Raton, Florida, Internal Report, 1992).Google Scholar
  10. 10.
    Environmental Protection Agency, Federal Register 51 (1986) 1602.Google Scholar
  11. 11.
    L. R. Newcomer, W. B. Blackburn and G. A. Hansen, in “Waste Testing and Quality Assurance”, Vol. 2, edited by D. Friedman (American Society for Testing and Materials, Philadelphia, 1990) p. 199.CrossRefGoogle Scholar
  12. 12.
    W. B. Blackburn, I. Show, L. Williams, D. R. Taylor and P. J. Marsden, in “Waste Testing and Quality Assurance”, ASTM Special Technical Publication No. 999, edited by D. Friedman (American Society for Testing and Materials, Philadelphia, 1988) p. 14.CrossRefGoogle Scholar
  13. 13.
    N. E. Prange and W. F. Garvey, in “Waste Testing and Quality Assurance”, Vol. 2, edited by D. Friedman (American Society for Testing and Materials, Philadelphia, 1990) p. 217.CrossRefGoogle Scholar
  14. 14.
    A. T. Prince, J. Amer. Ceram. Soc. 37 (1954) 402.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Dwivedi
    • 1
  • Y. Berta
    • 1
  • R. F. Speyer
    • 1
  1. 1.New York State College of Ceramics at Alfred UniversityAlfredUSA

Personalised recommendations