Advertisement

Journal of Materials Science

, Volume 29, Issue 9, pp 2261–2273 | Cite as

An assessment of expressions for the apparent thermal conductivity of cellular materials

  • P. G. Collishaw
  • J. R. G. Evans
Review

Abstract

Diverse expressions for the thermal conductivity of cellular materials are reviewed. Most expressions address only the conductive contribution to heat transfer; some expressions also consider the radiative contribution. Convection is considered to be negligible for cell diameters less than 4 mm. The predicted results are compared with measured conductivities for materials ranging from fine-pore foams to coarse packaging materials. The dependencies of the predicted conductivities on the material parameters which are most open to intervention are presented graphically for the various models.

Keywords

Polymer Heat Transfer Convection Thermal Conductivity Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

Absorption coefficient

Citv(J mol−1 K−1)

Specinc heat

E

Emissivity

EL

Emissivity of hypothetical thin parallel layer

Eo

Boundary surfaces emissivity

f

Fraction of solid normal to heat flow

fs

Fraction of total solid in struts of cell

K(m−1)

Mean extinction coefficient

k(Wm−1 K−1)

Effective thermal conductivity of foam

kcd(Wm−1 K−1)

Conductive contribution

kcr(Wm−1 K−1)

Convertive contribution

kg(Wm−1K−1)

Thermal conductivity of cell gas

kr(Wm−1 K−1)

Radiative contribution

ks(Wm−1 K−1)

Thermal conductivity of solid

L(m)

Thickness of sample

Lg(m)

Diameter of cell

Ls(m)

Cell-wall thickness

n

Number of cell layers

r

Reflection coefficient

t

Transmission coefficient

T(K)

Absolute temperature

Tm(K)

Mean temperature

TN

Fraction of energy passing through cell wall

T1(K)

Temperature of hot plate

T2(K)

Temperature of cold plate

Vg

Volume fraction of gas

Vw

Volume fraction of total solid in the windows

w

Refractive index

δ(m)

Effective molecular diameter

η(Pa s)

Gas viscosity

θ

Structural angle with respect to rise direction

σ(Wm−2 K−4)

Stefan constant

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    House of Commons Energy Committee, Sixth Report, Energy Policy Implications of the Greenhouse Effect (Her Majesty's Stationery Office, London 1989) Vol. 1, para. 102.Google Scholar
  2. 2.
    R. C. Progelhof, J. L. Throne and R. R. Ruetsch, Polym. Engng. Sci. 16 (1976) 615.Google Scholar
  3. 3.
    D. K. Hale, J. Mater. Sci. 11 (1976) 2105.Google Scholar
  4. 4.
    R. Taylor, in “International encyclopedia of composites”, edited by S. M. Lee Vol. 5, (VCH, New York, 1991) pp. 530–548.Google Scholar
  5. 5.
    J. T. Mottram and R. Taylor, ibid.“ Vol. 5, (VCH, New York, 1991) pp. 476–496.Google Scholar
  6. 6.
    R. A. Crane, R. I. Vachon and M. S. Khader, Proceedings of the Seventh Symposium on Thermophysical Properties, Galthersberg, MD, USA (American Society for Mechanical Engineers, NY, USA, 1977) pp, 109–123.Google Scholar
  7. 7.
    J. A. Valenzuela and L. R. Glicksman, in Thermal Insulation, Materials and Systems for Energy Conservation in the 80's, ASTM STP 789, edited by F. A. Govan, D. M. Greason, J. D. McAllister (American Society for Testing and Materials, Philadelphia, USA) pp. 688–702.Google Scholar
  8. 8.
    J. C. Maxwell, “A treatise on electricity and magnetism”, Vol. 1 (Clarendon Press, Oxford 1892) p. 440.Google Scholar
  9. 9.
    W. Woodside and J. H. Messmer, J. Appl. Phys. 32 (1961) 1688.Google Scholar
  10. 10.
    A. V. Liukov, A. G. Shashkor, L. L. Vasiliev and Yu. E. Fraisman Int. J. Heat Mass Transfer 11 (1968) 117.Google Scholar
  11. 11.
    R. L. Hamilton and O. K. Crosser, Ind. Engng. Chem. Fundam. 1 (1962) 187.Google Scholar
  12. 12.
    D. Tabor, “Gases, liquids and solids”, 2nd Edn (Cambridge University Press, Cambridge, 1979) p. 57.Google Scholar
  13. 13.
    M. E. Stephenson and M. Mark, Amer. Soc. Heat., Refrig. Air Conditioning Engineers J., 3 February (1961) 75.Google Scholar
  14. 14.
    G. T-N. Tsao, Ind. Engng. Chem. 53 (1961) 395.Google Scholar
  15. 15.
    A. Sugawaru and Y. Yoshizawa, J. Appl. Phys. 33 (1962) 3135.Google Scholar
  16. 16.
    A. W. Pratt, in “Thermal conductivity“, edited by R. P. Tye, Vol. 1 (Academic Press, London 1969) p. 319.Google Scholar
  17. 17.
    C. H. Lees, Phil. Mag. 49 (1900) 221.Google Scholar
  18. 18.
    Z. Hashin and S. Shtrikman, J. Appl. Phys. 33 (1962) 3125.Google Scholar
  19. 19.
    D. J. Doherty, R. Hurd and G. R. Lester, Chem. Ind. July (1962) 1340.Google Scholar
  20. 20.
    S. Baxter and T. T. Jones, Plastics Polym. 40 (1972) 69.Google Scholar
  21. 21.
    F. K. Brockhagen and W. Schmidt, in “Polyurethane Foams”, edited by T. T. Healy (Iliffe, London, 1964) pp. 93–144.Google Scholar
  22. 22.
    E. Kerner, Proc. Phys. Soc. B 369 (1956) 802.Google Scholar
  23. 23.
    A. D. Brailsford and K. G. Major, Brit. J. Appl. Phys. 15 (1964) 313.Google Scholar
  24. 24.
    T. Zhang, J. R. G. Evans and K. K. Dutta, J. Euro. Ceram. Soc. 5 (1989) 303.Google Scholar
  25. 25.
    R. Hamilton and O. Crosser, Ind. Engng. Chem. Fundam. 1 (1962) 187.Google Scholar
  26. 26.
    M. H. Kuok, H. K. Sy and K. L. Tan, Reg. J. Energy, Heat Mass Transfer 7 (1985) 17.Google Scholar
  27. 27.
    S. Oka and K. Yamone, Jpn. J. Appl. Phys. 6 (1967) 469.Google Scholar
  28. 28.
    R. M. Barrer, in “Diffusion in polymers” Edited by J. Crank and G. S. Park, (Academic Press, London 1968) pp. 165–216.Google Scholar
  29. 29.
    Von D. A. G. Bruggeman, Ann. Phys. 5 (1935) 636.Google Scholar
  30. 30.
    R. C. Progelhof and J. L. Throne, J. Cell. Plast. 11 (1975) 152.Google Scholar
  31. 31.
    A. Eucken, Forsch. Gebiete Ingenieuru B3 Forschurgshaft No. 353 (1932) 16.Google Scholar
  32. 32.
    H. W. Russell, J. Amer. Ceram Soc. 18 (1939) 1.Google Scholar
  33. 33.
    B. Budiansky, J. Compos. Mater. 4 (1970) 286.Google Scholar
  34. 34.
    T. B. Jefferson, O. W. Witzell and W. L. Sibbitt, Ind. Engng. Chem. 50 (1958) 1589Google Scholar
  35. 35.
    L. Topper, Ind. Engng. Chem. 47 (1955) 1377.Google Scholar
  36. 36.
    S. C. Cheng and R. I. Vachon, Int. J. Heat Mass Transfer 13 (1970) 537.Google Scholar
  37. 37.
    D. Bedeaux and R. Kapral, J. Chem. Phys. 79 (1983) 1783.Google Scholar
  38. 38.
    L. E. Nielsen, J. Appl. Polym. Sci. 17 (1973) 3819.Google Scholar
  39. 39.
    Idem., Ind. Engng. Chem. Fundam. 13 (1974) 17.Google Scholar
  40. 40.
    Idem., Appl. Polym. Symp. 12 (1966) 249.Google Scholar
  41. 41.
    J. M. Peterson and J. J. Hermans, J. Compos. Mater. 3 (1969) 338.Google Scholar
  42. 42.
    M. M. Levy, J. Cell. Plastics 2 (1966) 37.Google Scholar
  43. 43.
    D. Bhattacharjee, J. A. King and K. N. White-Head, ibid. 27 (1991) 240.Google Scholar
  44. 44.
    R. J. Harding, ibid. 1 (1965) 224.Google Scholar
  45. 45.
    Idem. ibid. 1 (1965) 385.Google Scholar
  46. 46.
    F. J. Norton, ibid. 3 (1967) 23.Google Scholar
  47. 47.
    C. J. Hilado and W. R. Proops, ibid. 5 (1969) 299.Google Scholar
  48. 48.
    G. W. Ball, R. Hurd and M. G. Walker, ibid. 6 (1970) 66.Google Scholar
  49. 49.
    R. R. Dixon, L. E. Edelman and D. K. McLain, ibid. 6, (1970) 44.Google Scholar
  50. 50.
    M. Bomberg, ibid. 26 (1990) 275.Google Scholar
  51. 51.
    T. T. Jones, Plastics Polym. 40 February (1972) 33.Google Scholar
  52. 52.
    R. Boetes and C. J. Hoogendoorn, Proc. Int. Cent., Heat Mass Trans. 24 (1987) 14.Google Scholar
  53. 53.
    L. Glickman, M. Schuetz and M. Sinofsky, Int. J. Heat Mass. Trans. 30 (1987) 187.Google Scholar
  54. 54.
    M. A. Schuetz and L. R. Glicksman, J. Cell. Plast. 20 (1984) 114.Google Scholar
  55. 55.
    L. R. Glicksman, Cellular Polym. 10 (1991) 276.Google Scholar
  56. 56.
    A. Cunningham, Proc. Int. Cent. Heat Mass Trans. 24 (1987) 32.Google Scholar
  57. 57.
    R. J. J. Williams, C. M. Aldao, Polym. Engng. Sci. 23, (1983) 293.Google Scholar
  58. 58.
    M. Garbuny, “Optical Physics”, (Academic Press, NY, 1965) p. 257.Google Scholar
  59. 59.
    A. L. Loeb, J. Amer. Ceram. Soc. 37 (1954) 96.Google Scholar
  60. 60.
    J. Francl and W. D. Kingery, ibid. 37 (1954) 99.Google Scholar
  61. 61.
    W. J. Batty, S. D. Probert and P. W. O'Callaghan, Appl. Energy 18 (1984) 117.Google Scholar
  62. 62.
    R. J. Harding, J. Cell. Plast. 2 (1966) 206.Google Scholar
  63. 63.
    R. Caps, A. Trunger, D. Buttner and J. Fricke, Int. J. Heat and Mass Transf. 27 (1984) 1865.Google Scholar
  64. 64.
    J. Fricke, R. Caps, D. Buttner, U. Heinemann and E. Hummer, J. Non-Cryst. Sol. 95–96 (1987) 1167.Google Scholar
  65. 65.
    R. Caps and J. Fricke, Solar Energy 36 (1986) 361.Google Scholar
  66. 66.
    T. W. Tong and C. L. Tien, Trans. ASME Ser. C. J. Heat Transfer 105 (1983) 70.Google Scholar
  67. 67.
    T. W. Tong, Q. S. Yang and C. L. Tien, ibid. 105 (1983) 76.Google Scholar
  68. 68.
    R. W. Skochdopole, Chem. Engng. Prog. 57 (10) (1961) 55.Google Scholar
  69. 69.
    H. Jeffreys, Proc. Roy. Soc. A. 118 (1928) 195.Google Scholar
  70. 70.
    T. T. Healy, “Polyurethane foams” (Iliffe, London, 1964) p. 121.Google Scholar
  71. 71.
    Anon, The properties of Dupont Vespel Parts, Technical Data Sheet (Dupont, Wilmington, DE, Undated).Google Scholar
  72. 72.
    J. Fricke, J. Non-Cryst. Solids 100 (1988) 169.Google Scholar
  73. 73.
    R. C. Weast (editor) Handbook of Chemistry and Physics”, 55th Edn (CRC Press, Cleveland, Ohio 1974) p. E2.Google Scholar
  74. 74.
    C. R. Wilke, J. Chem. Phys. 18 (1950) 517.Google Scholar
  75. 75.
    Loc. cit. [12], pp. 69–70.Google Scholar
  76. 76.
    J. Fricke in Proceedings of the First International Symposium on Aerogels at Wurzberg 1985, edited by J. Fricke (Springer Verlag, Heidelberg, 1986) pp. 94–103.Google Scholar
  77. 77.
    D. Buttner, R. Caps, U. Heinemann, E. Hummer, A. Kadur and J. Fricke, Solar Energy 40 (1988) 13.Google Scholar
  78. 78.
    D. Buttner, R. Caps and J. Fricke, High Temp. High Pressures 17 (1985) 375.Google Scholar
  79. 79.
    J. Brandrup and E. H. Immergut, “Polymer Handbook”, 2nd Edn (Wiley, New York, 1974) p. VIII-9.Google Scholar
  80. 80.
    C. A. Dostal (editor) “Engineered Materials Handbook”, Vol. 2 (American Society for Metals, Metals Park, Ohio, 1988) p. 260.Google Scholar
  81. 81.
    Loc. cit. [80], p. 133.Google Scholar
  82. 82.
    BS874 Part 2, Tests for Thermal Conductivity and Related Properties, Section 2.1, Guarded hot plate method, (British Standards Institute, London, 1986).Google Scholar
  83. 83.
    K. M. Haunton, J. K. Wright and J. R. G. Evans, Brit. Ceram. Trans. J. 89 (1990) 53.Google Scholar
  84. 84.
    P. Hammond and J. R. G. Evans, J. Mater. Sci. Lett. 10 (1991) 294.Google Scholar
  85. 85.
    J. Greener and J. R. G. Evans, J. Mater. Sci. in press.Google Scholar
  86. 86.
    W. Schramm, Bull. Amer. Ceram. Soc. 60 (1987) 1194.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. G. Collishaw
    • 1
  • J. R. G. Evans
    • 1
  1. 1.Department of Materials TechnologyBrunel UniversityUxbridgeUK

Personalised recommendations