Advertisement

Journal of Materials Science

, Volume 31, Issue 13, pp 3583–3587 | Cite as

Thermal evolution of phosphorodiamidic acid as a model for nitrogen stability in phosphate glasses

  • Y. Parent
  • L. Montagne
  • G. Palavit
Papers

Abstract

The thermal evolution at a heating rate of 3°C min−1 of phosphorodiamidic acid, HPO2(NH2)2, was studied up to 600°C. Thermogravimetric analysis revealed three stages at 120, 320 and 600°C. Nuclear magnetic resonance and Fourier transform-infrared analysis have been used to characterize the thermal products. At 120°C, phosphorodiamidic acid condenses without any weight loss into an ammonium salt of P,P′-diamidoimidodiphosphoric acid. It is transformed at 320°C into a more condensed product containing 17.7 wt % nitrogen and showing P-NH-P and P-O-P linkages. At 600°C, the product still contains 10 wt% nitrogen. Phosphorus nuclear magnetic resonance shows that it is composed of nitrogen-containing Q3 groups and ultraphosphate Q3 groups. It is concluded that nitrogen cannot be held in the phosphate network if it contains hydroxyl groups, and that incorporation of nitrogen requires both reducing and nitriding conditions.

Keywords

Nitrogen Polymer Ammonium Fourier Phosphorus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Reidmeyer, M. Rajaram and D. E. Day, J. Non Cryst. Solids 85 (1986) 186.CrossRefGoogle Scholar
  2. 2.
    M. Rajaram and D. E. Day, J. Am. Ceram. Soc. 69 (1986) 400.CrossRefGoogle Scholar
  3. 3.
    G. H. Beall and J. F. Macdowell, US Pat. 4666867, 19 May 1987.Google Scholar
  4. 4.
    R. Marchand, J. Non Cryst. Solids 56 (1983) 173.CrossRefGoogle Scholar
  5. 5.
    M. Watanabe and S. Sato, J. Mater. Sci. 21 (1986) 2623.CrossRefGoogle Scholar
  6. 6.
    S. Sato, M. Watanabe and T. Yamada, Gypsum Lime 199 (1985) 357.Google Scholar
  7. 7.
    K. Kowalczyk, Y. Parent, P. Vast and G. Palavit, J. Mater. Sci. 28 (1993) 3341.CrossRefGoogle Scholar
  8. 8.
    K. Kowalczyk, Y. Parent and G. Palavit, Bull. Chem. Soc. Jpn 66 (1993) 1963.CrossRefGoogle Scholar
  9. 9.
    R. Klement, G. Biberacher and V. Hille, Z. Anorg. Allg. Chem. 289 (1957) 80.CrossRefGoogle Scholar
  10. 10.
    G. Charlot, in “Les méthodes de la chimie analytique” edited by Masson (Paris, 1966) pp. 610, 849.Google Scholar
  11. 11.
    P. C. Peacock and G. Nickless, Z. Nat. Forsch. 24a (1969) 245.Google Scholar
  12. 12.
    B. C. Bunker, D. R. Tallant, C. A. Balfe, R. J. Kirkpatrick, G. L. Turner and M. R. Reidmeyer, J. Am. Ceram. Soc. 70 (1991) 163.Google Scholar
  13. 13.
    A. R. Grimmer and G. U. Wolf, Eur. J. Solid State Inorg. Chem. 28 (1991) 221.Google Scholar
  14. 14.
    J. V. Pustinger, W. T. Cave and M. L. Nielsen, Spectrochim. Acta 11 (1959) 909.CrossRefGoogle Scholar
  15. 15.
    L. M. Sukova and K. I. Petrov, Russ. J. Inorg. Chem. 27 (1982) 950.Google Scholar
  16. 16.
    R. W. Larson and D. E. Day, J. Non Cryst. Solids 88 (1986) 97.CrossRefGoogle Scholar
  17. 17.
    J. M. Devynck, E. Puskaric, R. De Jaeger and J. Heubel, J. Chem. Res. 5 (1977) 188.Google Scholar
  18. 18.
    P. R. Bloomfield, Monograph. Lond. 13 (1961) 89Google Scholar
  19. 19.
    K. Kadic and W. Wanek, Czechoslov. Chem. Commun. 37 (1972) 735CrossRefGoogle Scholar
  20. 20.
    R. K. Brow, Y. Zhu, D. E. Day and G. W. Arnold, J. Non Cryst. Solids 120 (1990) 172CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Y. Parent
    • 1
  • L. Montagne
    • 1
  • G. Palavit
    • 1
  1. 1.Laboratoire de Chimie des Matériaux VitreuxUniversité des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance

Personalised recommendations