Advertisement

Journal of Materials Science

, Volume 31, Issue 13, pp 3475–3479 | Cite as

Densification and mechanical properties of WC particulate reinforced Cr3C2 matrix composites

  • Chen-Tsu Fu
  • Chung-Ping Lai
  • Ai-Kang Li
Papers

Abstract

The mechanical properties of Cr3C2 can be improved by adding 14–25 vol % of WC particulates through a hot-pressing process. The Cr3C2-20 vol % WC composite exhibits a fracture strength and fracture toughness of 883 MPa and 6.8 MPa m1/2, respectively, which is a better than 60% increase over the monolithic Cr3C2f = 526 MPa, KIC = 4.1 MPa m1/2). The possible strengthening and toughening mechanisms are disscussed in terms of microstructures, fracture modes (intergranular or transgranular) and micromechanics. The microstructural evolution and fractography which were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) will be discussed.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Scanning Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Klar, in “Metal Handbook Ninth Edition vol. 7”, (American society for Metals, Metal Park, Ohio, June, 1984) 804–814.Google Scholar
  2. 2.
    K. Isozaki, Y. Hirashima and Y. Imamura, US Patent No. 4927791 (May 22 1990).Google Scholar
  3. 3.
    B. W. Lin and D. M. Liu, presented in 95th Amer. Ceram Soc. Annual Meeting, April 18–22, 1993, Cincinnati, Ohio, paper-25-SII.Google Scholar
  4. 4.
    T. Hachisuka, J. Jpn. Soc. Powd. Powd. Metall. 37 (1990) 1021.CrossRefGoogle Scholar
  5. 5.
    F. F. Lange, J. Mater. Res. 2, (1987) 59.CrossRefGoogle Scholar
  6. 6.
    S. Sundaresan and L. A. Aksay, J. Amer. Ceram. Soc. 73 (1990) 54.CrossRefGoogle Scholar
  7. 7.
    P. F. Becher, Ibid. 74 (1991) 255.CrossRefGoogle Scholar
  8. 8.
    C. S. Smith, Trans. Metall. Soc. AIME 175 (1949) 15.Google Scholar
  9. 9.
    R. W. Davage, in “Fracture Mechanics of Ceram. Vol. 4”, edited by R.C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai and V. Y. Shevchenko (Plenum Press, New York. 1978), p. 447–467.Google Scholar
  10. 10.
    J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan and G. A. Miller, J. Amer. Ceram. Soc. 76 (1993) 503.CrossRefGoogle Scholar
  11. 11.
    W. D. Kingery, H. K. Bowen and D. R. Vhlmann, in “introduction to Ceramics” (John Wiley & Sons, Inc., New York 1976). p. 785.Google Scholar
  12. 12.
    R. W. Rice, Ceram. Eng. Sci. Proc. 11 (1990) 667.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Chen-Tsu Fu
    • 1
  • Chung-Ping Lai
    • 1
    • 2
  • Ai-Kang Li
    • 1
  1. 1.Material Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan
  2. 2.Center for Measurement StandardsIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations