Advertisement

Journal of Materials Science

, Volume 31, Issue 13, pp 3469–3474 | Cite as

Zirconium recovery from zircaloy shavings

  • A. E. Bohe
  • J. J. Andrade Gamboa
  • E. M. Lopasso
  • D. M. Pasquevich
Papers

Abstract

A chlorination process for recovering Zr from zircaloy scrap has been studied. Zircaloy chlorination was possible at temperatures as low as 220 °C. The scale microstructure and its effect on the zircaloy reactivity was analysed using Thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS) and scanning electron microscopy (SEM) techniques. A solid-solid phase transformation took place into the oxide scale during the zircaloy chlorination. Zirconium, as ZrCl4(g), was separated from the oxide scale and chlorides of Cr and Fe. The effect of the reaction temperature was also analysed.

Keywords

Oxide Polymer Chloride Microstructure Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Standard specification for Zirconium alloy sheet, strip, and plate for nuclear application”. ASTM: B352-83.Google Scholar
  2. 2.
    A. E. Bohe, E. M. Lopasso, J. J. Andrade Gamboa and D. M. Pasquevich, submitted to Mater. Sci. Tech. (1995).Google Scholar
  3. 3.
    M. H. Kline, in “The Metallurgy of Zirconium” (Mc Graw-Hill, New York, 1955) p. 55.Google Scholar
  4. 4.
    A. W. Schlechten, in “Rare Metals Handbook” (Reinhold, New York, 1954) p. 603.Google Scholar
  5. 5.
    C. K. Gupta and P. K. Jena, Trans. Indian Inst. Metals. 336 (1965) 89.Google Scholar
  6. 6.
    J. D. Gilchrist, in “Extraction Metallurgy” (Pergamon Press, Oxford, 1980) p. 330.Google Scholar
  7. 7.
    I. Gaballah, M. Djona, J. C. Mugica and R. Solozobal, Resources, Conservation and Recycling 10 (1994) 87.CrossRefGoogle Scholar
  8. 8.
    W. J. Kroll, J. Metals 188 (1950) 1445.Google Scholar
  9. 9.
    F. H. Hayes, H. B. Bomberger, F. H. Froes, L. Kaufman and H. M. Burte, ibid. 36 (1984) 70.Google Scholar
  10. 10.
    D. M. Pasquevich, J. J. Andrade Gamboa and A. Caneiro, Thermochem. Acta 156 (1989) 275.CrossRefGoogle Scholar
  11. 11.
    H. Toraya, M. Yoshimura and S. Somiya, J. Amer. Ceram. Soc. 67 (1984) 119.Google Scholar
  12. 12.
    E. Gerbhardt, H. D. Seghezzi and W. Durrschnabel, J. Nucl. Mater. 4 (1961) 255.CrossRefGoogle Scholar
  13. 13.
    R. E. Pawel, ibid. 50 (1974) 247.CrossRefGoogle Scholar
  14. 14.
    C. J. Rosa, J. Less-Common. Metals. 15 (1968) 183.CrossRefGoogle Scholar
  15. 15.
    G. L. Miller, in “Modern Materials” (Academic Press, London, 1958) p. 308.Google Scholar
  16. 16.
    D. R. Lide Jr, in “JANAF Thermochemical Tables, Third Edition, Part II” (American Chemical Society, Washington D.C. and American Institute of Physics, New York, 1985) p. 1691.Google Scholar
  17. 17.
    O. Kubaschewski and C. B. Alcock, in “Metallurgical Thermochemistry, International Series of Material Science and Technology” (Pergamon Press, Oxford, 1983) p. 376.Google Scholar
  18. 18.
    A. P. Chupakhin, A. A. Saidel Nikov and V. V. Boldyrev, React. Solids 3 (1987) 1.CrossRefGoogle Scholar
  19. 19.
    D. M. Pasquevich, F. Lovey and A. Caneiro, J. Amer. Ceram. Soc. 72 (1989) 1664.CrossRefGoogle Scholar
  20. 20.
    F. H. Stott, R. Prescott, P. Elliot and M. H. J. H. Al'atia, High Temp. Tech. 6 (1988) 115.CrossRefGoogle Scholar
  21. 21.
    K. Reinhold and K. Hauffe, J. Electrochem. Soc. 124 (1977) 875.CrossRefGoogle Scholar
  22. 22.
    E. Murray, J. Prasad, H. Cabibil and J. A. Kelber, Surf. Sci. 319 (1994) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • A. E. Bohe
    • 1
  • J. J. Andrade Gamboa
    • 1
  • E. M. Lopasso
    • 1
    • 2
  • D. M. Pasquevich
    • 1
    • 2
  1. 1.Consejo Nacional de Investigaciònes Cientificas y TécnicasCONICETRio NegroArgentina
  2. 2.Comisión Nacional de Energia AtómicaCentro Atómico BarilocheRio NegroArgentina

Personalised recommendations