Advertisement

Journal of Materials Science

, Volume 30, Issue 16, pp 4199–4203 | Cite as

Preparation and thermoelectric properties of β-Fe1−xRuxSi2

  • H. Takizawa
  • P. F. Mo
  • T. Endo
  • M. Shimada
Article

Abstract

β-Fe1−xRuxSi2 solid solution was synthesized by solid state reaction at 1100 °C for 48 h and subsequent annealing at 850 °C for 168 h in an evacuated silica tube. Single phase solid solution was obtained in the composition range 0 ≤ x ≤ 0.1. The thermal stability range of the β-phase is extended to higher temperature region by partial substitution of Ru atom. The thermoelectric properties of Cr or Co-doped β-Fe1−xRuxSi2 strongly depend on the sintering conditions. The samples with optimum thermoelectric properties are obtained by high-pressure sintering at 3 GPa and 800 °C for 1 h. The optimum compositions are found to be Fe0.92Ru0.05Cr0.03Si2 and Fe0.92Ru0.05C0.03Si2 for p-type and n-type materials, respectively. The power factors (σα2) of these materials are higher than that of β-FeSi2 based materials.

Keywords

Solid Solution Thermal Stability Single Phase Solid State Reaction Composition Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Ware and D. J. McNeill, Proc. IEE 111 (1964) 178.Google Scholar
  2. 2.
    I. Nishida, Phys. Rev. B 7 (1973) 2710.CrossRefGoogle Scholar
  3. 3.
    C. Le. Corre and J. M. Genin, Phys. Stat. Sol.(b) 51 (1972) K85.CrossRefGoogle Scholar
  4. 4.
    Y. Dusausoy, J. Protas, R. Wandji and B. Roques, Acta Crystallog. B 27 (1971) 1209.CrossRefGoogle Scholar
  5. 5.
    I. Engström, Acta Chem. Scandinavica 27 (1970) 2117.CrossRefGoogle Scholar
  6. 6.
    K. Mason and G. Müller-Vogt, J. Cryst. Growth 63 (1983) 34.CrossRefGoogle Scholar
  7. 7.
    P. Eckerlin and H. Kandler, in Landolt Börnstein, “Numerical Data and Functional Relationships in Science and Technology, New Series”, Vol. 6, p. 866, edited by K. H. Hellwage and A. M. Hellwage (Springer-Verlag, Berlin/Heidelberg/New York, 1971).Google Scholar
  8. 8.
    T. Endo, Y. Sato, H. Takizawa and M. Shimada, J. Mater. Sci. Lett. 11 (1992) 424.CrossRefGoogle Scholar
  9. 9.
    J. K. Burdett, J. Solid. State. Chem. 45 (1982) 399.CrossRefGoogle Scholar
  10. 10.
    Y. Ohta and D. G. Pettifor, J. Phys. Condens. Matter. 2 (1990) 8189.CrossRefGoogle Scholar
  11. 11.
    T. Kojima, Phys. Stat. Sol (a) 111 (1989) 233.CrossRefGoogle Scholar
  12. 12.
    I. Nishida, Kogyo Zairyo 33 (1985) 108. [in Japanese].Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. Takizawa
    • 1
  • P. F. Mo
    • 1
  • T. Endo
    • 1
  • M. Shimada
    • 1
  1. 1.Department of Molecular Chemistry and Engineering, Faculty of EngineeringTohoku UniversityMiyagiJapan

Personalised recommendations