Journal of Materials Science

, Volume 30, Issue 16, pp 4115–4124 | Cite as

An overview of the deposition chemistry and the properties of in situ doped polysilicon prepared by low pressure chemical vapour deposition

  • W. Ahmed
  • E. Ahmed
  • M. L. Hitchman


Low pressure chemical vapour deposition (LPCVD) has become the standard method for the fabrication of amorphous and polycrystalline silicon films in the semiconductor industry. However, as the trends towards lower temperatures, smaller dimensions and more complex geometries continue, it is becoming increasingly important to obtain a better fundamental understanding of the chemistry and properties of the layers deposited in order to achieve better control of the process. In this paper an overview is given of the chemistry, growth kinetics, electrical properties and structure of in situ doped polysilicon and of how these factors are related to reactor parameters. In addition, the effects of wafer cages on the within-wafer uniformity are discussed. Heat treatment using rapid thermal annealing has a significant impact on the electrical and structural properties of polysilicon and these effects are also examined.


Silicon Heat Treatment Cage Electrical Property Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Hitchman and K. F. Jensen, in “Chemical vapour deposition: principles and applications”, edited by M. L. Hitchman and K. F. Jensen (Academic Press, London. 1993) Ch. 1.Google Scholar
  2. 2.
    P. John, in “The chemistry of the semiconductor industry”, edited by S. J. Moss and A. Ledwith (Blackie, Glasgow, 1987) Ch. 5.Google Scholar
  3. 3.
    S. Wolf and R. N. Tauber, “Silicon processing for VLSI era, process technology”, Vol. 1 (Lattice Press, Ca, 1986) Ch. 6.Google Scholar
  4. 4.
    M. L. Hitchman and W. Ahmed, Vacuum 34 (1984) 979.CrossRefGoogle Scholar
  5. 5.
    M. L. Hitchman, C. W. Jones, J. Zhao and S. Shamlian, Advan. Mater. Optics & Elec. 2 (1993) 123.CrossRefGoogle Scholar
  6. 6.
    W. Ahmed and D. B. Meakin, J. Crys. Growth 79 (1986) 394.CrossRefGoogle Scholar
  7. 7.
    M. L. Hitchman and K. F. Jensen, in “Chemical vapour deposition: principles and applications”, edited by M. L. Hitchman and K. F. Jensen (Academic Press, London, 1993) Ch. 4.Google Scholar
  8. 8.
    K. F. Jensen, M. L. Hitchman and W. Ahmed, in “Proceedings of the Fifth European CVD, Upsala Sweden, 1985, edited by J. O. Carlsson and J. Lindstrom (Univ. of Upsala) p. 144.Google Scholar
  9. 9.
    W. Ahmed, R. D. Pilkington and D. B. Meakin, Thin Solid Films 202 (1991) 97.CrossRefGoogle Scholar
  10. 10.
    W. Ahmed, PhD thesis, University of Salford, Salford (1986).Google Scholar
  11. 11.
    S. M. Gates, D. B. Beach, R. Inbihl, B. A. Scott and J. E. Denmuth, J. Vac. Sci. Technol. 5 (1987) 628.CrossRefGoogle Scholar
  12. 12.
    M. L. Hitchman, J. Kane and A. E. Widmer, Thin Solid Films 59 (1979) 231.CrossRefGoogle Scholar
  13. 13.
    M. L. Hitchman and J. F. Zhao, J. de Phys. IV, Colloque C3 3 (1993) C-115.Google Scholar
  14. 14.
    K. F. Roenigk and K. F. Jensen, J. Electrochem. Soc. 132 (1985) 448.CrossRefGoogle Scholar
  15. 15.
    S. Nakayama, H. Yonezawa and J. Murota, Jpn. J. Appl. Phys. 23(7) (1984) L493.CrossRefGoogle Scholar
  16. 16.
    J. Simon, R. Feurer, A. Reynes and R. Morancho, J. de Phys. IV, Colloque C3 3 (1993) 99.Google Scholar
  17. 17.
    M. L. Hitchman, W. Ahmed, S. Shamlian and M. Trainor, Chemtronics 2 (1987) 147.Google Scholar
  18. 18.
    B. S. Meyerson and W. Olbricht, J. Electrochem. Soc. 131 (1984) 2361.CrossRefGoogle Scholar
  19. 19.
    B. S. Meyerson and M. L. Yu, ibid. 131 (1984) 2366.CrossRefGoogle Scholar
  20. 20.
    M. Gueye, E. Scheid, P. Taurines, P. Duverneuil, D. Brelle-Daspet and J. P. Couderc, J. de Phys. IV, Colloque C2, suppl. au J. de Phys. II 1 (1991) C2–63.Google Scholar
  21. 21.
    P. Ho, M. E. Coltrin, J. S. Binkley and C. F. Melius, J. Phys. Chem. 89 (1985) 4647.CrossRefGoogle Scholar
  22. 22.
    R. F. C. Farrow, J. Electrochem. Soc. 121 (1974) 899.CrossRefGoogle Scholar
  23. 23.
    M. L. Hitchman and J. Kane, J. Crys. Growth 55 (1981) 485.CrossRefGoogle Scholar
  24. 24.
    H. Kurokawa, J. Electrochem. Soc. 129 (1982) 2620.CrossRefGoogle Scholar
  25. 25.
    K. Nakazawa, J. Appl. Phys. 69 (1991) 1703.CrossRefGoogle Scholar
  26. 26.
    M. Taniguchi, M. Hirose, Y. Osaka, S. Hasegawa and T. Shimizu, Jpn. J. Appl. Phys. 19 (1980) 665.CrossRefGoogle Scholar
  27. 27.
    N. C. Lu, C. Y. Lu, M. K. Lee, C. C. Shih, C. S. Wang, W. Reuter and T. T. Sheng, J. Electrochem. Soc. 131 (1984) 897.CrossRefGoogle Scholar
  28. 28.
    M. M. Mandurah, K. C. Saraswat and T. I. Kamins, ibid. 126 (1979) 1019.CrossRefGoogle Scholar
  29. 29.
    W. Ahmed and R. D. Pilkington, J. Electronic Mater (1995), submitted.Google Scholar
  30. 30.
    W. Ahmed and E. Ahmed, Mater. Chem. Phys. 37 (1994) 289.CrossRefGoogle Scholar
  31. 31.
    J. W. Seto, J. Electrochem. Soc. 46 (1975) 5247.Google Scholar
  32. 32.
    M. Trainor, PhD thesis, University of Strathclyde, Glasgow (1989).Google Scholar
  33. 33.
    J. Blazeiowski and F. W. Lampe, J. Photochem. 20 (1982) 9.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • W. Ahmed
    • 1
  • E. Ahmed
    • 2
  • M. L. Hitchman
    • 3
  1. 1.Department of Mechanical Engineering and Manufacturing SystemsUniversity of NorthumbriaNewcastle Upon TyneUK
  2. 2.Department of PhysicsB. Z. UniversityMultanPakistan
  3. 3.Department of Pure and Applied ChemistryThomas Graham Building, University of StrathclydeGlasgowUK

Personalised recommendations