Journal of Materials Science

, Volume 30, Issue 16, pp 4095–4100 | Cite as

Diamond formation on carbon/carbon composite

  • Jyh -Ming Ting


A carbon/carbon composite was used as substrate for low-pressure diamond deposition. To enhanced diamond nucleation on carbon/carbon composites, a total of ten surface preparation methods have been investigated. These methods involved the use of atomic hydrogen etching, mechanical polishing, sonication, or coating. Diamond nucleation was found to occur on either the defects of the carbon/carbon composite substrates or diamond particulate left on the substrates. The defects were created primarily by atomic hydrogen etching during the coating process. Seeding with diamond powders was performed by dip coating, sonication, or spray-coating processes. It was found that these seeding processes resulted in excellent nucleation of diamond.


Hydrogen Polymer Material Processing Preparation Method Coating Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Maeda, S. Ikari, T. Okubo, K. Kusakabe and S. Morroka, J. Mater. Sci. 28 (1993) 129.CrossRefGoogle Scholar
  2. 2.
    B. R. Stoner, B. E. Williams, S. D. Wolter, K. Nishimura and J. T. Glass, J. Mater. Res. 7 (1992) 257.CrossRefGoogle Scholar
  3. 3.
    R. J. Meilunas and R. P. H. Chang, Appl. Phys. Lett. 59 (1991) 3461.CrossRefGoogle Scholar
  4. 4.
    T. Hartnett, R. Miller, D. Montanari, C. Willingham and T. Tustison, J. Vac. Sci. Technol. A8 (1990) 2129.CrossRefGoogle Scholar
  5. 5.
    P. M. Natisham and A. A. Morrish, Mater. Lett. 8 (1989) 269.CrossRefGoogle Scholar
  6. 6.
    P. A. Denning and D. A. Stevenson, Appl. Phys. Lett. 59 (1991) 22.CrossRefGoogle Scholar
  7. 7.
    D. V. Fedoseev, V. P. Varnin and B. V. Derjaguin, Russ. Chem. Rev. 53 (1984) 435 (English Translation).CrossRefGoogle Scholar
  8. 8.
    B. V. Deryagin and D. V. Fedoseev, “Growth of diamond and graphite from the gas phase” (Nauka, Moscow, 1977) Ch. 4.Google Scholar
  9. 9.
    Z. Li, L. Wang, T. Suzuki, A. Argoitia, O. Pirouz and J.A. Angus, J. Appl. Phys. 73 (1993) 15.Google Scholar
  10. 10.
    W. R. Lambrecht, C. H. Lee, B. Segall, J. A. Angus, Z. Li and M. Sunkara, Nature 364 (1993) 607.CrossRefGoogle Scholar
  11. 11.
    J. J. Dubray, C. G. Pantano and W. A. Yarbrough, J. Appl. Phys. 72 (1992) 3136.CrossRefGoogle Scholar
  12. 12.
    C. Wild, P. Koidl, W. Muller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski and R. Brenn, Diamond Rel Mater. 2 (1993) 158.CrossRefGoogle Scholar
  13. 13.
    Y. Sato, C. Hata and M. Kamo, in “Proceedings of the 1st International Conference on New Diamond Science and Technology”, edited by S. Saito, O. Fukunaga, and M. Yoshikawa (KTK Scientific-Terra Scientific, Tokyo, 1988) p. 95.Google Scholar
  14. 14.
    J.-M. Ting and M. L. Lake, J. Mater. Res. 9 (1994) 636.CrossRefGoogle Scholar
  15. 15.
    M. L. Lake, J.-M. Ting and J. F. Phillips Jr, Surf. Coat. Technol. 62 (1993) 367.CrossRefGoogle Scholar
  16. 16.
    N. Sekada, in “Proceedings of the 10th International Conerence on CVD”, edited by G.W. Cullen and J. Blocher Jr (Electrochemical Society, Pennington, NJ, 1987) pp. 7–18.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Jyh -Ming Ting
    • 1
  1. 1.Applied Sciences, Inc.CedarviIleUSA

Personalised recommendations