Advertisement

Journal of Materials Science

, Volume 30, Issue 16, pp 4032–4036 | Cite as

Study of valence states of copper in copper-phosphate glasses

  • G. D. Khattak
  • M. A. Salim
  • A. B. Hallak
  • M. A. Daous
  • E. E. Khawaja
  • L. E. Wenger
  • D. J. Thompson
Article

Abstract

Phosphate glasses containing CuO with composition, [(CuO)x(P2O5)1−x], x=0.10, 0.20, 0.25, 0.30, 0.40 and 0.50, were studied by magnetization, X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS). It was observed that compositional changes take place in going from batch to glass and these changes are more pronounced for low copper concentration. The ratio [Cu2+/Cutotal] as a function of x was determined from XPS and magnetization combined with RBS. The magnetization measurements suggest that more than 90% of the copper ions exist in the Cu2+ state in the glasses, while the XPS data show that less than 50% of the copper ions may be in the Cu2+ state. The low Cu2+ states detected by XPS may have resulted form reduction of copper ions upon exposure of the samples to X-ray radiation during measurement.

Keywords

Copper P2O5 Material Processing Magnetization Measurement Valence State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Mott, J. Non-Cryst. Solids 1 (1968) 1.CrossRefGoogle Scholar
  2. 2.
    L. Murawski, C. H. Chung and J.D. Mackenzie, ibid. 32 (1979) 91.CrossRefGoogle Scholar
  3. 3.
    M. Sayer and A. Mansingh, Phys. Rev. B6 (1972) 4629.CrossRefGoogle Scholar
  4. 4.
    C. F. Drake, I. F. Scanlan and A. Engel, Phys. Status Solidi 32 (1969) 193.CrossRefGoogle Scholar
  5. 5.
    G. R. Moridi and C. A. Hogarth, Int. J. Electron 44 (1978) 297.CrossRefGoogle Scholar
  6. 6.
    C. R. Bamford, “Colour generation and control in glass” (Elsevier Scientific, Amsterdam, 1977).Google Scholar
  7. 7.
    E. Baiocchi, A. Montenero, and M. Bettinelli, J. Non-Cryst. Solids 46 (1981) 203.CrossRefGoogle Scholar
  8. 8.
    B. S. Bae and M. C. Weinberg, J. Am. Ceram. Soc. 74 (1991) 3039.CrossRefGoogle Scholar
  9. 9.
    E. E. Khawaja, F. F. Al-Adel, A. B. Hallak, M.M. Al-Kofahi and M. A. Salim, Thin Solid Films 192 (1990) 149.CrossRefGoogle Scholar
  10. 10.
    L. R. Doolittle, Nucl. Instrum. Methods B15 (1986) 227.CrossRefGoogle Scholar
  11. 11.
    E. E. Khawaja, Z. Hussain, M. S. Jazzar and O. B. Dabbousi, J. Non-Cryst. Solid 93 (1987) 45.CrossRefGoogle Scholar
  12. 12.
    G. A. Vernon, G. Stucky and T. A. Carlson, Inorg. Chem. 15 (1976) 278.CrossRefGoogle Scholar
  13. 13.
    K. S. Kim, J. Electron Spectrosc. Rel. Phenom. 3 (1974) 217.CrossRefGoogle Scholar
  14. 14.
    Sven Larsson and M. Bragga, Chem. Phys. Lett. 28 (1977) 596.CrossRefGoogle Scholar
  15. 15.
    G. Van Der Laan, C. Westra, C. Haas and G. A. Swatzky, Phys. Rev. B23 (1981) 4369.CrossRefGoogle Scholar
  16. 16.
    A. Proctor and P. M. A. Sherwood, Anal. Chem. 52 (1980) 2315.CrossRefGoogle Scholar
  17. 17.
    R. K. Brow in “Characterization of ceramics,” Materials Characterization Series, edited by R. E. Loehman (Butterworth-Heinemann, 1993) p. 106.Google Scholar
  18. 18.
    R. J. Colton, A. M. Guzman and J. W. Rabalais, J. Appl. Phys. 49 (1978) 4090.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. D. Khattak
    • 1
  • M. A. Salim
    • 1
  • A. B. Hallak
    • 2
  • M. A. Daous
    • 2
  • E. E. Khawaja
    • 2
  • L. E. Wenger
    • 3
  • D. J. Thompson
    • 3
  1. 1.Department of PhysicsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Energy Research Laboratory (Research Institute)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Department of PhysicsWayne State UniversityDetroitUSA

Personalised recommendations