Journal of Materials Science

, Volume 30, Issue 16, pp 4009–4013 | Cite as

Microstructural investigation of quartz submitted to ultra-short shock loading

  • P. Cordier
  • J. C. Doukhan
  • A. Migault
  • J. P. Romain


A high-energy pulsed laser was used to induce very short (2 ns) pressure pulses in quartz single crystals. The microstructure of recovered specimens was characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Whatever the peak pressures (20–90 GPa), the shocked materials showed no shock defects (amorphous lamellae, Brazil twins, etc.). The microstructure was dominated by fracturing. The present study thus suggests that for very short pulse durations, quartz can be loaded at pressures well above the Hugoniot elastic limit without undergoing solid-state amorphization. The behaviour of quartz is purely elastic-brittle.


Microstructure Quartz Transmission Electron Microscopy Pulse Laser Optical Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Stöffler and F. Langenhorst, Meteoritics 29 (1994) 155.CrossRefGoogle Scholar
  2. 2.
    Th. Löwer and R. Sigel, Contr. Plasma Phys. 33 (1993) 355.CrossRefGoogle Scholar
  3. 3.
    O. Goltrant, H. Leroux, J. C. Doukhan and P. Cordier, Phys. Earth Planet Interiors 74 (1992) 219.CrossRefGoogle Scholar
  4. 4.
    A. J. Gratz, J. Non-Cryst. Solids 67 (1984) 543.CrossRefGoogle Scholar
  5. 5.
    A. J. Gratz, J. Tyburczy, J. Christie, T. Ahrens and P. Pongratz, Phys. Chem. Mineral. 16 (1988) 221.CrossRefGoogle Scholar
  6. 6.
    A. J. Gratz, W. J. Nellis, J. M. Christie, W. Brocious, J. Swegle and P. Cordier, ibid. 19 (1992) 267.CrossRefGoogle Scholar
  7. 7.
    A. R. Huffmann, J. M. Brown, N. L. Carter and W. U. Reimold, J. Geophys. Res. 98 (1993) 22171.CrossRefGoogle Scholar
  8. 8.
    F. Langenhorst, A. Deutsch, D. Stöffler and U. Hornemann, Nature 356 (1992) 507.CrossRefGoogle Scholar
  9. 9.
    F. Langenhorst and A. Deutsch, Earth Planet. Sci. Lett. 125 (1994) 407.CrossRefGoogle Scholar
  10. 10.
    A. Ng, B. K. Godwal, J. Waterman, L. Dasilva, N. W. Ashcroft and R. Jeanloz, Phys. Rev. B 44 (1991) 4872.CrossRefGoogle Scholar
  11. 11.
    B. Stevering and P. Dudel, J. Appl. Phys. 47 (1976) 1940.CrossRefGoogle Scholar
  12. 12.
    C. R. Philipps Jr, T. P. Turner, R. F. Harison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi and T.R. King, ibid. 64 (1988) 1023.Google Scholar
  13. 13.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, ibid. 68 (1990) 775.CrossRefGoogle Scholar
  14. 14.
    J. Grun, R. Decoste, B. H. Ripin and J. Gardner, Appl Phys. Lett. 39 (1981) 545.CrossRefGoogle Scholar
  15. 15.
    F. Cottet and M. Boustie, J Appl. Phys. 66 (1989) 4067.CrossRefGoogle Scholar
  16. 16.
    J. W. Swegle, ibid. 68 (1990) 1563.CrossRefGoogle Scholar
  17. 17.
    B. R. Lawn and R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Cordier
    • 1
  • J. C. Doukhan
    • 1
  • A. Migault
    • 2
  • J. P. Romain
    • 2
  1. 1.Laboratoire de Structure et Propriétés de l'Etat Solide-UA CNRS 234Université des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance
  2. 2.Laboratoire d'Energétique et de Détonique-UA CNRS 193Ecole Nationale Supérieure de Mécanique et d'AérotechniqueFuturoscope CedexFrance

Personalised recommendations