Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3847–3856 | Cite as

Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals

  • A. Jain
  • A. K. Razdan
  • P. N. Kotru
  • B. M. Wanklyn
Article

Abstract

Results of microhardness measurements on (100) and (110) planes of flux-grown LaBO3 crystals, in the applied load range of 10–100g, are presented. The microhardness was found to decrease with increasing load in a non-linear manner. By applying Hays and Kendall's law, the materials resistance pressure and other constants of the equation could be calculated. Hardness anisotropy, showing periodic variation of Hv with the maxima and minima repeating at every 15° change in orientation of the indentor, is described and discussed. Hmax/Hmin are estimated as 1.14 and 1.06 for (100) and (110) planes, respectively. The fracture toughness values, Kc, determined from measurements of crack lengths, are estimated to be 1.6, 1.7 MN m−3/2 (for (100) planes) and 1.2, 1.5 MN m−3/2 (for (110) planes) at 90 and 100g loads, respectively. The brittleness index, Bi, is estimated as 4.6, 4.0 μm−1/2 (for (100) planes) 6.0, 4.6 μm−1/2 (for (110) planes) at 90 and 100g, loads respectively.

Keywords

Polymer Anisotropy Directional Effect Brittleness Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Buckle, Mater Rev. 4 (1959) 49.Google Scholar
  2. 2.
    D. J. Clinton and R. Morrell, Mater. Chem. Phys. 17 (1987) 461.CrossRefGoogle Scholar
  3. 3.
    W. Hayden, N. G. Moffatt and J. Wulff, ‘The Structure and Properties of Materials’, Vol. III, Mechanical Behaviour (Wiley Eastern, New York, 1968).Google Scholar
  4. 4.
    H. Buckie, “Progress in microindentation hardness testing” (Victor petterson Bukindustriak tiboday, Stockholm, 1945).Google Scholar
  5. 5.
    G. P. Upit and S. A. Varchanya, Phys. Status Solidi 17 (1966) 831.CrossRefGoogle Scholar
  6. 6.
    A. R. Patel, C. C. Desai, J. Phys. D. Appl. Phys. 3 (1970) 1645.CrossRefGoogle Scholar
  7. 7.
    C. L. Saraf, PhD thesis, Maharaja Sayajirao University of Baroda, Baroda (1971).Google Scholar
  8. 8.
    R. T. Shah, PhD thesis, Maharaja Sayajirao University of Baroda, Baroda (1976).Google Scholar
  9. 9.
    S. B. Trivedi, PhD Thesis, Maharaja Sayajirao University of Baroda, Baroda (1977).Google Scholar
  10. 10.
    A. R. Patel and S. K. Arora, J. Mater. Sci. 12 (1977) 124.Google Scholar
  11. 11.
    K. S. Raju, Pramana 8 (1977) 266.CrossRefGoogle Scholar
  12. 12.
    A. R. Patel and S. K. Arora, Kristall Technik. 13 (1978) 1445.CrossRefGoogle Scholar
  13. 13.
    M. L. Rao and V. Haribabu, J. Mater. Sci. 16 (1978) 821.Google Scholar
  14. 14.
    U. V. SubbaRao and V. Haribabu, Pramana 11 (1978) 149.CrossRefGoogle Scholar
  15. 15.
    J. R. Pandya and C. T. Achaarya, Proc. Nat. Phys. Solid State Phys. Symp. 21C (1978) 193.Google Scholar
  16. 16.
    K. N. Reddy, M. L. Rao and V. Haribabu, Ind. J. Pure Appl. Phys. 17 (1979) 806.Google Scholar
  17. 17.
    K. J. Pratap and V. Haribabu, Bull. Mater. Sci. 2 (1980) 43.CrossRefGoogle Scholar
  18. 18.
    U. V. SubbaRao and V. Haribabu, Ind. J. Pure. Phys. 54A (1980) 147.Google Scholar
  19. 19.
    D. W. Johnson Jr., E. M Vogel and B. B. Ghate, in “Proceedings of the Third International Conference on Ferrites”, ICF3, Kyoto, Japan, edited by Hiroshi Watanabe (CAP J, Sept.–Oct., 1980) p. 285.Google Scholar
  20. 20.
    V. P. Bhatt and C. F. Desai, Bull. Mater. Sci. 4 (1982) 23.CrossRefGoogle Scholar
  21. 21.
    L. J. Bhagia, PhD thesis Maharaja Sayajirao University of Baroda, Baroda (1982).Google Scholar
  22. 22.
    K. Nihara and T. Hirai, J. Less-Common Metals Lett. 92 (1983) L 15.CrossRefGoogle Scholar
  23. 23.
    J. R. Pandya, L. J. Bhagia and A. J. Shah, Bull. Mater. Sci. 5 (1983) 79.CrossRefGoogle Scholar
  24. 24.
    S. K. Arora and N. M. Batra, personal communication (1984).Google Scholar
  25. 25.
    J. R. Pandya and L. J. Bhagia, Ind. J. Pure Appl. Phys. 22 (1984) 439.Google Scholar
  26. 26.
    R. C. Shah, PhD thesis, Maharaja Sayajirao University of Baroda, Baroda (1984).Google Scholar
  27. 27.
    P. N. Kotru, K. K. Raina, S. K. Kachroo and B. M. Wanklyn, J. Mater. Sci. 19 (1984) 2582.CrossRefGoogle Scholar
  28. 28.
    B. Vengatesan, N. Kanniah and P. Ramasamy, J. Mater. Sci. Lett. 5 (1986) 987.CrossRefGoogle Scholar
  29. 29.
    P. N. Kotru, A. K. Razdan and B. M. Wanklyn, J. Mater. Sci. 24 (1989) 793.CrossRefGoogle Scholar
  30. 30.
    P. N. Kotru, Sushma Bhatt and K. K. Raina, J. Mater. Sci. Lett. 8 (1989) 587.CrossRefGoogle Scholar
  31. 31.
    Romesh Kumar Bishamber Nath Marwaha, PhD thesis, University Saurashtra, Rajkot (1990).Google Scholar
  32. 32.
    F. Kick, “Das Gesetzder, proportionalen widerstande Und Science anwendung” Felix, Leipzig (1885).Google Scholar
  33. 33.
    E. M. Onitsch, Mikroskopie 2 (1947) 131.Google Scholar
  34. 34.
    C. A. Brookes, in “Science of Hard Materials”, edited by R. K. Vishwandham, D. J. Rowoliffe and J. Gurland (Plenum, New York).Google Scholar
  35. 35.
    C. Hays and E. G. Kendall, Metallogr. 6 (1973) 275.CrossRefGoogle Scholar
  36. 36.
    F. W. Daniel, C. G. Dunn, Trans. ASM 41 (1949) 419.Google Scholar
  37. 37.
    P. G. Partridge and E. Roberts, J. Inst. Metals 91 (1962) 159.Google Scholar
  38. 38.
    R. P. Burnand, PhD dissertation, Exeter University (1974).Google Scholar
  39. 39.
    C. A. Brookes, J. B. O'Neill and B. A. W. Redfern, Proc. R. Soc. Lond. A322 (1971).Google Scholar
  40. 40.
    O. O. Adeyvove and T. F. Page, J. Mater. Sci. 11 (1976) 981.CrossRefGoogle Scholar
  41. 41.
    D. Y. Watts and A. F. Willoughby J. Appl. Phys. 56 (1984) 1859.CrossRefGoogle Scholar
  42. 42.
    Idem, Mater. Lett. 2 (1984) 355.CrossRefGoogle Scholar
  43. 43.
    D. V. Gitsue M. P. Dyntu, S. A. Supostat and A. G. Cheban, Inorg. Mater. (USA) 14 (1978) 1207.Google Scholar
  44. 44.
    E. M. Levin, R. S. Roth and J. B. Martin, Am. Mineral. 46 (1961).Google Scholar
  45. 45.
    R. W. G. Wyckoff, “Crystal Structures” (Wiley, New York, 1964).Google Scholar
  46. 46.
    V. M. Goldschmidt and H. Hauptman, Nachr. Ges. Wiss. Gottinges Math Phys. Kl. 53 (1932).Google Scholar
  47. 47.
    P. N. Kotru and B. M. Wanklyn, J. Mater. Sci. Lett. 14 (1979) 755.CrossRefGoogle Scholar
  48. 48.
    B. R. Lawn, B. J. Hockey and H. Richter, J. Microsc. 173 (1983) 295.CrossRefGoogle Scholar
  49. 49.
    T. P. Dabbs, C. J. Fairbanks and B. R. Lawn, “Methods for assessing the structural reliability of brittle materials”, edited by Freiman and Hudson, ASTM STP 844 (American Society for Testing and Materials, Philadelphia, PA, 1984).Google Scholar
  50. 50.
    W. Bischof and B. Wenderoff, Arch. Eisenhuttenw. 15 (1941–42) 497.Google Scholar
  51. 51.
    E. B. Bergsman, “The Micro-hardness Tester” (Victor pettersons, Bokindustriaktiebolag, Stockholm, 1945).Google Scholar
  52. 52.
    D. R. Tate, Trans. ASM 35 (1945) 374.Google Scholar
  53. 53.
    N. W. Thibault and N. L. Nyguist ibid. 38 (1947) 271.Google Scholar
  54. 54.
    L. P. Tarosov and W. W. Thibault, ibid. 38 (1947) 331.Google Scholar
  55. 55.
    R. Mitsche and E. M. Onitsch, Mikroskopie 3 (1948) 257.Google Scholar
  56. 56.
    R. P. Campbell, Q. Henderson and M. R. Donleavy, Trans. ASM 40 (1948) 954.Google Scholar
  57. 57.
    W. Rostoker, J. Inst. Metals 77 (1950) 175.Google Scholar
  58. 58.
    A. R. G. Brown and E. Ineson, J.Iron Steel Inst. 169 (1951) 376.Google Scholar
  59. 59.
    E. D. Bernhardt, Z. Metallkde 33 (1951) 135.Google Scholar
  60. 60.
    R. Schulze, Feinwerktechnik 55 (1951) 190.Google Scholar
  61. 61.
    H. Buckle, Metall. Rev. 4 (1959) 13.CrossRefGoogle Scholar
  62. 62.
    J. D. J. Ross, PhD dissertation, University of Exeter (1984).Google Scholar
  63. 63.
    H. O. 'Neill, J. Inst. Metals 30 (1923) 299.Google Scholar
  64. 64.
    L. B. Pfeil, “The effect of cold work on the structure and hardness of single iron crystals and the changes produced by subsequent annealing”, Carnegie Memoires, Iron and Steel Institute, Vol. 16 (1927) p. 153.Google Scholar
  65. 65.
    H. Winchell, Am. Mineral. 30 (1945) 583.Google Scholar
  66. 66.
    H. Buckle, Rev. Metall. 48 (1951) 957.CrossRefGoogle Scholar
  67. 67.
    B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 62 (1979) 347.CrossRefGoogle Scholar
  68. 68.
    R. W. Rice, in “The Science of hardness Testing and its Research application”, edited by J. J. Westbrook and H. Conrad (ASM, Metals Park, OH, 1973) p. 117.Google Scholar
  69. 69.
    J. Lankford, J. Mater. Sci. 12 (1977) 791.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. Jain
    • 1
  • A. K. Razdan
    • 1
  • P. N. Kotru
    • 1
  • B. M. Wanklyn
    • 2
  1. 1.Department of PhysicsUniversity of JammuJammuIndia
  2. 2.Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations