Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3817–3821 | Cite as

Synthesis of CrxTi1−2xNbxO2O20≤x≤0.5 rutile solid solutions from alkoxides

  • M. A. Tena
  • G. Monrós
  • J. Carda
  • E. Cordoncillo
  • P. Escribano
  • J. Alarcón
Article

Abstract

In this study, CrxTi1−2xNbxO2 (0 ⩽ x ⩽ 0.5) rutile solid solutions have been synthesized from gels built from hydrolysis-condensation of Cr (III) acetylacetonate, NbCl5 and Ti (IV) isopropoxide mixture (polymeric gel). Characterization of these solid solutions was carried out by X-ray diffraction, ultraviolet-visible and infrared spectroscopy, differential thermal and thermogravimetric analysis and CIELAB (Commission Internationale del'Eclairage L*a*b*) parameter measurements. The results obtained by the polymeric gel method were compared with those obtained by traditional ceramic synthesis. This comparison reveals some differences with regard to synthesis temperatures and reaction mechanisms. The formation of CrxTi1−2xNbxO2 (0 ⩽ x ⩽ 0.5) rutile solid solutions by the ceramic method requires temperatures of about 1200°C and soaking times of several days. These solid solutions are synthesized at 1000°C in 24 h by the polymeric gel method. In ceramic synthesis, the CrNbO4 compound with rutile structure appears as an intermediate compound in the formation of rutile solid solutions. In polymeric gel synthesis, however, the CrNbO4 rutile compound was not detected in the samples.

Keywords

Solid Solution Infrared Spectroscopy Rutile Thermogravimetric Analysis Reaction Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Monros, J. Carda, M. A. Tena, P. Escribano and J. Alarcon, J. Mater. Sci. 27 (1992) 351.CrossRefGoogle Scholar
  2. 2.
    J. Carda, S. Rodriguez, G. Monros, M. A. Tena, P. Escribano and J. Alarcon, J. Non-Cryst. Sol. 147–8 (1992) 303.CrossRefGoogle Scholar
  3. 3.
    B. Khazai, R. Kershw, K. Dwight and A. Wold, Mater. Res. Bull. 16 (1981) 655.CrossRefGoogle Scholar
  4. 4.
    J. Andrade, M. E. Villafuerte-Castrejon, R. Valenzuela and A. R. West, J. Mater. Sci. Lett. 5 (1986) 147.CrossRefGoogle Scholar
  5. 5.
    M. A. Tena, J. Carda, G. Monros, P. Escribano, M. Sales and J. Alarcon, Mater. Res. Bull. 27 (1992) 473.CrossRefGoogle Scholar
  6. 6.
    M. A. Tena, P. Escribano, G. Monros, J. Carda and J. Alarcon, Mater. Res. Bull. 27 (1992) 1301.CrossRefGoogle Scholar
  7. 7.
    J. Zarzycki, M. Prassas and J. Phalippou, J. Mater. Sci. 17 (1982) 3371.CrossRefGoogle Scholar
  8. 8.
    POWCAL and LSQC computer programmes. Department of Chemistry, University of Aberdeen, UK.Google Scholar
  9. 9.
    Commission Internationale del'Eclairage, “Recommendations on Uniform Color Spaces, Color Difference Equations, Psychometrics Color Terms”, Supplement no. 2 of CIE Publication N∘ 15 (E1-1.31) 1971 (Bureau Central de la CIE, Paris, 1978).Google Scholar
  10. 10.
    Y. Murase, E. Kato and K. Daimon, J. Amer. Sci. 24 (1989) 2140.Google Scholar
  11. 11.
    M. Nogami and M. Tomozawa, J. Amer. Ceram. Soc. 69 (1986) 99.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. A. Tena
    • 1
  • G. Monrós
    • 1
  • J. Carda
    • 1
  • E. Cordoncillo
    • 1
  • P. Escribano
    • 1
  • J. Alarcón
    • 2
  1. 1.Inorganic Chemistry Area, Experimental Science DepartmentJaume I UniversityCastellónSpain
  2. 2.Inorganic Chemistry DepartmentValencia UniversityBurjassot (Valencia)Spain

Personalised recommendations