Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3767–3773 | Cite as

The structure and tensile properties of Al-Si alloy hybrid reinforced with alumina-aluminosilicate short fibre

  • Jian -Qing Jiang
  • Hua -Nan Liu
  • Al -Ping Ma
  • Rong -Sheng Tan
Article

Abstract

Alumina-aluminosilicate fibre hybrid reinforced aluminium-silicon alloy was fabricated by pressure infiltration route. Tensile test results at room temperature and at 300°C are reported. It is shown that the alumina-aluminosilicate fibre ratio does have a strong influence on the ultimate tensile strength (UTS) of these hybrid composites. At an alumina-aluminosilicate ratio of 3∶2, the optimum UTS of hybrid metal matrix composites (MMC) was obtained. The UTS of only alumina fibre reinforced MMC was improved with increasing fibre volume fraction at 300°C. No fibre put-out was observed on the fracture surface and longitudinal section.

Keywords

Ultimate Tensile Strength Metal Matrix Composite Fibre Volume Hybrid Composite Fibre Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Doychak, J. Min. Met. Mater., June (1992) 46.Google Scholar
  2. 2.
    P. K. Chaudhury, H. J. Rack and B. A. Mikucki, J. Mater. Sci. 26 (1992) 2343.CrossRefGoogle Scholar
  3. 3.
    W. A. Spitzig, D. T. Peterson and F. C. Laabs, ibid. 26 (1991) 2000.CrossRefGoogle Scholar
  4. 4.
    P. Rohatgi, J. Min. Met. Mater., April (1991) 10.Google Scholar
  5. 5.
    M. E. Toaz and M. D. Smalc, Light Metal Age, 12 (1986) 29.Google Scholar
  6. 6.
    D. Richter, Advanced Mater. Tech. Inter. 60 (1992) 57.Google Scholar
  7. 7.
    T. S. Srivatsan, I. A. Ibrahim, F. A. Mohamed and E. J. Lavernia, J. Mater. Sci. 26 (1991) 5965.CrossRefGoogle Scholar
  8. 8.
    C. M. Friend, I. Horsfall and C. L. Burrows, ibid. 26 (1991) 225.CrossRefGoogle Scholar
  9. 9.
    E. M. Klier, A. Mortensen, J. A. Cornie and M. C. Flemings, ibid. 26 (1991) 2519.CrossRefGoogle Scholar
  10. 10.
    T. Lim, Y. H. Kim, C. S. Lee and K. S. Han, J. Composite Mater. 26 (1992) 1063.CrossRefGoogle Scholar
  11. 11.
    Data sheet from China Luoyang Refractory Mater. Co.Google Scholar
  12. 12.
    J. W. Weeton, D. M. Peters and K. L. Thomas, “Engineers Guide to Composite Materials” (America Society for Metals, 1987) pp. 7–18.Google Scholar
  13. 13.
    R. D. Schueller and F. E. Wawner, Composites Science and Technology 40 (1991) 213.CrossRefGoogle Scholar
  14. 14.
    Ming Yang and V. D. Scott, J. Mater. Sci. 26 (1991) 2245.CrossRefGoogle Scholar
  15. 15.
    Z. R. Gu, “Mechanics of Composites Reinforced with, short fibres”, 1st Edn (Defence Industry Press, Beijing, 1990) p. 93.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Jian -Qing Jiang
    • 1
  • Hua -Nan Liu
    • 1
  • Al -Ping Ma
    • 1
  • Rong -Sheng Tan
    • 1
  1. 1.Department of Materials Science and EngineeringSoutheast UniversityJiangsuPeople’s Republic of China

Personalised recommendations