Journal of Materials Science

, Volume 29, Issue 14, pp 3749–3753 | Cite as

On the lateral habits of polymer single crystals

  • P. N. Chaturvedi


Single crystals of trans-1, 4-polyisoprene (TPIP) have been grown from dilute solutions in amyl acetate, n-heptane and n-butanol/n-heptane mixtures. Two samples of different molecular weights, and molecular-weight distribution have been used to demonstrate the effect of these molecular parameters on the shape of single crystals. The experiments suggested that crystallization of narrowly distributed polymer chains, irrespective of the molecular weight of the crystallizing species, will produce a hexagonal morphology. This narrow distribution of chains during crystallization can be achieved by starting with a sample of low polydispersity or using a solvent/non-solvent mixture for crystallization. If the chain-size distribution is not controlled, then at later stages of growth the heterogeneous mixture of chains will create a curvature on the {110} faces and produce oval-shaped lamellar platelets. Further, the crystal habits in the present work were found to be related to the solvent, molecular weight and molecular-weight distribution, rather than to the crystallization temperature.


Polymer Crystallization Hexagonal Polymer Chain Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Khoury and E. Passaglia, in “Treatise on Solid State Chemistry”, Vol. 3, edited by N. B. Hannay (Plenum Press, NY, 1976) p. 335.CrossRefGoogle Scholar
  2. 2.
    D. M. Sadler, Polymer 24 (1983) 1401.CrossRefGoogle Scholar
  3. 3.
    Idem Polym. Commun. 25 (1984) 196.Google Scholar
  4. 4.
    D. M. Sadler, M. Barber, G. Lark and M. J. Hill, Polymer 27 (1986) 25.CrossRefGoogle Scholar
  5. 5.
    S. J. Organs and A. Keller, J. Mater. Sci. 20 (1985) 1571.CrossRefGoogle Scholar
  6. 6.
    P. N. Chaturvedi, M. J. Patel, K. C. Patel and R. D. Patel, in “Structure-Property Relations of Rubbers”, edited by S. K. De and A. K. Bhowmick (I.I.T. Press, Kharagpur, 1981) p. 121.Google Scholar
  7. 7.
    Idem, Colloid Polym. Sci. 265 (1987) 592.CrossRefGoogle Scholar
  8. 8.
    P. N. Chaturvedi, J. Mater. Sci. Lett. 6 (1987) 305.CrossRefGoogle Scholar
  9. 9.
    G. N. Patel and R. D. Patel, J. Polym. Sci. Polym. Phys. Edn. 8 (1970) 47.CrossRefGoogle Scholar
  10. 10.
    C. W. Bunn, Proc. R. Soc. (Lond.) A-180 (1942) 40.Google Scholar
  11. 11.
    M. -Ch. Colet, J. J. Point and M. J. Dosiere, J. Polym. Sci. Polym. Phys. Edn. 24 (1986) 1183.CrossRefGoogle Scholar
  12. 12.
    A. Mehta and B. Wunderlich, Colloid Polym. Sci. 253 (1975) 193.CrossRefGoogle Scholar
  13. 13.
    P. H. Lindenmeyer, H. Beumer and R. Hosemann, Polym. Eng. Sci. 19 (1979) 51.CrossRefGoogle Scholar
  14. 14.
    T. Kawai and A. Keller, J. Polym. Sci. Polym. Lett. Edn. 2 (1964) 333.CrossRefGoogle Scholar
  15. 15.
    H. D. Keith, R. G. Vadimsky and F. J. Padden Jr, J. Polym. Sci. Polym. Phys. Edn. 8 (1970) 1687.Google Scholar
  16. 16.
    P. Blais and R. St. John Manley, ibid. 4 (1966) 1022.Google Scholar
  17. 17.
    D. H. Jones, A. J. Latham, A. Keller and M. J. Girolamo, ibid. 11 (1973) 1959.Google Scholar
  18. 18.
    J. D. Barnes and F. Khoury, J. Res. Nat. Bur. Std. (US) 78A (1974) 363.CrossRefGoogle Scholar
  19. 19.
    J. M. Stellman and A. E. Woodward, J. Polym. Sci. Polym. Lett. Edn. 7 (1969) 775.CrossRefGoogle Scholar
  20. 20.
    Idem, J. Polym. Sci. Polym. Phys. Edn. 9 (1971) 59.Google Scholar
  21. 21.
    H. D. Keith and F. J. Padden jr, ibid. 25 (1987) 2371.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. N. Chaturvedi
    • 1
  1. 1.School of Materials Science and Technology, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations