Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3724–3732 | Cite as

Effect of Fe content on the mechanical alloying and mechanical properties of Al-Fe alloys

  • X. P. Niu
  • L. Froyen
  • L. Delaey
  • C. Peytour
Article

Abstract

Al-Fe alloys with Fe contents ranging from 5 to 12 wt% are produced by a double mechanical alloying process (DMA) which consists of a first step of mechanical alloying (MA1) applied to elemental Al and Fe powders, with subsequent heat treatment of MA1 powders to promote the formation of Al-Fe intermetallic phases, and a second mechanical alloying step (MA2) to refine the intermetallic phase, and consolidation of the produced powders by combination of degassing and hot extrusion. The effect of Fe content on the process, as well as on the mechanical properties of the extruded alloys, has been extensively studied. The alloys produced by this process show excellent tensile strength and stiffness at room and elevated temperatures due to the strengthening of Al by intermetallics, as well as to the stabilization of the structure by inert dispersoids.

Keywords

Mechanical Property Heat Treatment Tensile Strength Material Processing Mechanical Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Thursfield and M. J. Stowell, J. Mater. Sci. 9 (1974) 1644CrossRefGoogle Scholar
  2. 2.
    M. H. Jacobs, A. G. Doggett and M. J. Stowell, ibid. 9 (1974) 1631.CrossRefGoogle Scholar
  3. 3.
    J. R. Pickens, ibid. 16 (1981) 1437.CrossRefGoogle Scholar
  4. 4.
    M. A. Zaidi, J. S. Robinson and T. Sheppard, Mater. Sci. Technol. 1 (1985) 737.CrossRefGoogle Scholar
  5. 5.
    C. S. Sivaramakrishnan, K. Lal and R. K. Mahanti, J. Mater. Sci. 26 (1991) 4369.CrossRefGoogle Scholar
  6. 6.
    Y.-W. Kim, in “Proceedings of Dispersion Strengthened Al Alloys, Phoenix, Arizona, January 1988”, edited by Y.-W. Kim and W. M. Griffith (The Minerals, Metals & Materials Society, Warrendale, 1988) p. 157.Google Scholar
  7. 7.
    G. M. Pharr, M. S. Zedalis, D. J. Skinner and P. S. Gilman (The Minerals, Metals & Materials Society, Warrendale, 1988) p. 309.Google Scholar
  8. 8.
    P. S. Gilman and J. S. Benjamin, Ann. Rev. Mater. Sci. 13 (1983) 279.CrossRefGoogle Scholar
  9. 9.
    J. A. Hawk, P. K. Mirchandan, R. C. Benn and H. G. F. Wilsdorf, in “Proceedings of Dispersion Strengthened Al Alloys, Phoenix, Arizona, January 1988”, edited by Y.-W. Kim and W. M. Griffth (The Minerals, Metals & Materials Society, Warrendale, 1988) p. 517.Google Scholar
  10. 10.
    P. Le Brun, X. P. Niu, L. Froyen, B. Munar and L. Delaey, in “Proceedings of Solid State Powder Processing, Indianapolis, October 1989”, edited by A. H. Clauer and J. J. deBarbadillo (The Minerals, Metals & Materials Society, Warrendale, 1990) p. 273.Google Scholar
  11. 11.
    P. Le Burn, L. Froyen and L. Delaey, in “Proceedings of Structural Applications of Mechanical Alloying, Mytle Beach, South Carolina, March 1990”, edited by F. H. Froes and J. J. deBarbadillo (American Society for Minerals International, 1990) p. 155.Google Scholar
  12. 12.
    P. H. Shingu, B. Huang, S. R. Nishitani and S. Nasu, Trans. JIM 29 (1988) 3.Google Scholar
  13. 13.
    Y. D. Dong, W. H. Wang, L. Liu, K. Q. Xiao, S. H. Tong and Y. Z. He, Mater. Sci. Eng. A134 (1991) 867.CrossRefGoogle Scholar
  14. 14.
    F. H. Froes and C. Suryanarayana, Int. J. Powder Metall. April 28/2 (1992) 202.Google Scholar
  15. 15.
    X. P. Niu, P. Le Brun, L. Froyen, C. Peytour and L. Delaey, in “Proceedings of Advances in Powder Metallurgy & Particulate Materials, San Francisco, June 1992”, Vol. 7, edited by J. M. Capus and R. M. German (Metal Powder Industries Federation & American Powder Metallurgy Institute, Princeton, 1992) p. 272.Google Scholar
  16. 16.
    P. Le Brun, L. Froyen and L. Delaey, Mater. Sci. Eng. A157 (1992) 79.CrossRefGoogle Scholar
  17. 17.
    X. P. Niu, P. Le Brun, L. Froyen, C. Peytour and L. Delaey, Powder Metall. Int. 3 (1993) 118.Google Scholar
  18. 18.
    H. E. Kissinger, J. Res. National Bureau of Standards 57 (1956) 217.CrossRefGoogle Scholar
  19. 19.
    Powder Diffraction File, PDF-2 data base, Sets 1–40, CD-ROM (International Centre for Diffraction Data, Swarthmore, 1991).Google Scholar
  20. 20.
    P. Skjeppe, Metallurg. Trans. A 18A (1987) 189.CrossRefGoogle Scholar
  21. 21.
    G. Riontino, C. Antonione, L. Battezzati and A. Zanada, Mater. Sci. Eng. A134 (1991) 1166.CrossRefGoogle Scholar
  22. 22.
    K. N. Ramakrishnan, H. B. McShane and T. Sheppard, Mater. Sci. Technol. 9 (1993) 104.CrossRefGoogle Scholar
  23. 23.
    S. Ezz, M. J. Koczak, A. Lawley and M. K. Premkumar, in “Proceedings of High Strength Powder Metallurgy Aluminium Alloys II”, edited by G. J. Hildeman and M. J. Koczak (The Metallurgical Society, Inc., Warrendale, 1986) p. 287.Google Scholar
  24. 24.
    D. J. Skinner and M. Zedalis, Scripta Metall. 22 (1988) 1783.CrossRefGoogle Scholar
  25. 25.
    B. Paul, Trans. Metall. Soc. AIME 218 (1960) 36.Google Scholar
  26. 26.
    N. Dudzinski, J. Inst. Metals 81 (1952–53) 49.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • X. P. Niu
    • 1
  • L. Froyen
    • 1
  • L. Delaey
    • 1
  • C. Peytour
    • 2
  1. 1.Department of Metallurgy and Material EngineeringKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Direction des Etudes MatériauxRenaultBoulogneFrance

Personalised recommendations