Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3719–3723 | Cite as

Hot isostatic pressing of tetragonal ZrO2 solid-solution powders prepared from acetylacetonates in the system ZrO2-Y2O3-Al2O3

  • H. Watanabe
  • K. Hirota
  • O. Yamaguchi
  • S. Inamura
  • H. Miyamoto
  • N. Shiokawa
  • K. Tsuji
Article

Abstract

In compositions having ZrO2/Y2O3=(74.25−71.25)/(0.75–3.75) (mol% ratio) with 25 mol% Al2O3, metastable t-ZrO2 solid solutions crystallize at ∼ 780° to ∼ 860°C from amorphous materials prepared by the simultaneous hydrolysis of zirconium, yttrium and aluminium acetylacetonates. Hot isostatic pressing has been performed for 1 h at 1130 and 1230°C under 196 MPa using their powders. Two kinds of material are fabricated: (i) perfect ZrO2 solid-solution ceramics and (ii) composites of ZrO2 solid solution and α-Al2O3. Their mechanical properties are examined, in connection with microstructures and t/m ZrO2 ratios. Composites with a homogeneous dispersed α-Al2O3 derived from solid-solution ceramics result in a remarkable increase of strength.

Keywords

Polymer Aluminium Microstructure Mechanical Property Hydrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Inamura, H. Miyamoto, Y. Imaida, M. Takagawa, K. Hirota and O. Yamaguchi, J. Mater. Sci. in press.Google Scholar
  2. 2.
    A. H. Heuer, N. Claussen, W. H. Kriven and M. Rühle, J. Amer. Ceram. Soc. 65 (1982) 642.CrossRefGoogle Scholar
  3. 3.
    P. F. Becher, ibid. 64 (1981) 37.CrossRefGoogle Scholar
  4. 4.
    R. C. Garvie and P. S. Nicholson, ibid. 55 (1972) 303.CrossRefGoogle Scholar
  5. 5.
    H. Toraya, M. Yoshimura and S. Somiya, ibid. 67 (1984) C-119.Google Scholar
  6. 6.
    S. Hori, M. Yoshimura and S. Somiya, J. Mater. Sci. Lett. 4 (1985) 413.CrossRefGoogle Scholar
  7. 7.
    A. G. Evans and E. A. Charles, J. Amer. Ceram. Soc. 59 (1976) 311.CrossRefGoogle Scholar
  8. 8.
    K. Niihara, A. Nakahira and T. Hirai, ibid. 67 (1984) C-13.Google Scholar
  9. 9.
    R. McMeeking and A. G. Evans, ibid. 65 (1982) 242.CrossRefGoogle Scholar
  10. 10.
    B. Budiansky, J. W. Hutchinson and J. C. Lambropoulos, Int. J. Solids Struct. 19 (1983) 337.CrossRefGoogle Scholar
  11. 11.
    A. G. Evans and K. T. Faber, J. Amer. Ceram. Soc. 64 (1981) 394.CrossRefGoogle Scholar
  12. 12.
    Idem, ibid. 67 (1984) 255.CrossRefGoogle Scholar
  13. 13.
    R. Stevens and P. A. Evans, Br. Ceram. Trans. J. 83 (1984) 23.Google Scholar
  14. 14.
    F. F. Lange, J. Mater. Sci. 17 (1982) 247.CrossRefGoogle Scholar
  15. 15.
    J. Wang, M. Rainforth and R. Stevens, Br. Ceram. Trans. J. 88 (1989) 1.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Watanabe
    • 1
  • K. Hirota
    • 1
  • O. Yamaguchi
    • 1
  • S. Inamura
    • 2
  • H. Miyamoto
    • 2
  • N. Shiokawa
    • 3
  • K. Tsuji
    • 3
  1. 1.Department of Applied Chemistry, Faculty of EngineeringDoshisha UniversityKyotoJapan
  2. 2.Osaka Prefectural Institute of Industrial TechnologyOsakaJapan
  3. 3.Osaka Cement Co. LtdOsakaJapan

Personalised recommendations