Journal of Materials Science

, Volume 29, Issue 14, pp 3705–3718 | Cite as

Thermally induced phase transformations of 12-tungstophosphoric acid 29-hydrate: synthesis and characterization of PW8O26-type bronzes

  • U. B. Mioč
  • R. Ž. Dimitrijević
  • M. Davidović
  • Z. P. Nedić
  • M. M. Mitrović
  • Ph. Colomban


The phase transformations of 12-tungstophosphoric H3PW12O40-29H2O (29-WPA) acid in the temperature range from ambient temperature to 1150°C were investigated and characterized by differential thermal analysis (DTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), infrared (i.r.) and Raman spectroscopies. From room temperature to 550°C, 29-WPA passes through a dehydration process, which characterizes the formation of different crystallohydrates, in anhydrous form as well as “denuded” Keggin's anions, the D-phase (PW12O38). During these processes, Keggin's anions are not disturbed too much and they are preserved up to about 550°C. The “D” phase is transformed by solid-solid recrystallization at about 600°C in a new monophosphate bronze type compound PW8O26. Unit cell dimensions were calculated from XRPD data (ao=0.7515 nm). With the temperature increasing up to 1150°C, novel synthesized cubic bronze passed through three polymorphous phase transitions. According to a general formula for monophosphate tungsten bronzes (WO3)2m (PO4)4 all four polymorphs have m=16.


Phase Transition Differential Scanning Calorimetry Tungsten Recrystallization Phase Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Nakamura, T. Kodama, J. Ogino and Y. Miyake Chem. Lett., (1979) 17.Google Scholar
  2. 2.
    O. Nakamura, I. Ogino and T. Kodama, Solid State Ionics 3/4 (1981) 347.CrossRefGoogle Scholar
  3. 3.
    S. K. Mohapatra, G. D. Boyd, F. G. Storz, S. Wagner and F. Wudl, J. Electrochem. Soc. 126 (1979) 805.CrossRefGoogle Scholar
  4. 4.
    R. C. T. Slade, H. A. Pressman and E. Skou, Solid State Ionics 38 (1990) 207.CrossRefGoogle Scholar
  5. 5.
    R. C. T. Slade, I. M. Thomson, R. C. Ward and C. Poinsignon, J. Chem. Soc., Chem. Commun. (1987) 726.Google Scholar
  6. 6.
    G. J. Kearley, R. P. White, C. Forano and R. C. T. Slade, Spectrochim. Acta A 46 (1990) 419.CrossRefGoogle Scholar
  7. 7.
    Ph. Colomban, C. Doremieux-Morin, Y. Piffard, M. H. Limage and A. Novak, J. Mol. Struct. 213 (1989) 83.CrossRefGoogle Scholar
  8. 8.
    Ph. Colomban and A. Novak, ibid. 198 (1989) 277.CrossRefGoogle Scholar
  9. 9.
    M. Pham-Thi and Ph. Colomban, J. Less-Commun. Metal. 108 (1985) 747.CrossRefGoogle Scholar
  10. 10.
    Idem. J. Mater. Sci. 21 (1986) 1591.CrossRefGoogle Scholar
  11. 11.
    U. Mioč, Ph. Colomban and A. Novak, J. Mol. Struct. 218 (1990) 123.CrossRefGoogle Scholar
  12. 12.
    U. Mioč, M. Davidović, N. Tjapkin, Ph. Colomban and A. Novak, Solid State Ionics 46 (1991) 103.CrossRefGoogle Scholar
  13. 13.
    P. E. Werner, Z. Kristall, 120 (1964) 375.CrossRefGoogle Scholar
  14. 14.
    J. W. Visser, J. Appl. Cryst, 2 (1969) 89.CrossRefGoogle Scholar
  15. 15.
    R. Garvey, Least Squares Unit Cell Refinement, Version 86.2., Department of Chemistry, North Dakota State University, 1987.Google Scholar
  16. 16.
    D. E. Appleman and H. T. Evans Jr., U. S. Department of Commerce National Technical Information Service. 216 (1973) 188.Google Scholar
  17. 17.
    U. B. Mioč, to be published.Google Scholar
  18. 18.
    M. Fournier, Ch. Feumi-Jantou, Ch. Rabia, G. Herve' and S. Launay, J. Mater. Chem. 2 (1992) 971.CrossRefGoogle Scholar
  19. 19.
    N. R. Noe-Spirlet, G. N. Brown, W. R. Busing and H. A. Levy, Acta Cryst A 31 (1975) 580.Google Scholar
  20. 20.
    G. M. Brown, M. R. Noe-Spirlet, W. R. Busing and H. A. Levy., ibid. 33 (1977) 1038.CrossRefGoogle Scholar
  21. 21.
    M. R. Noe-Spirlet and W. R. Busing, ibid. 34 (1978) 907.CrossRefGoogle Scholar
  22. 22.
    H. D'amour and R. Allmann, Z. Kristall. 143 (1976) 1.CrossRefGoogle Scholar
  23. 23.
    R. Allmann and H. D'Amour, ibid. 141 (1975) 161.CrossRefGoogle Scholar
  24. 24.
    C. J. Clark and D. Hall, Acta Cryst. B32 (1976) 1545.CrossRefGoogle Scholar
  25. 25.
    R. Standberg, Acta Chem. Scand. A 29 (1975) 359.CrossRefGoogle Scholar
  26. 26.
    H. Okamoto, K. Yamanaka and T. Kudo, Mater. Res. Bull. 21 (1986) 551.CrossRefGoogle Scholar
  27. 27.
    U. Mioč, M. Davidovic', J. Tomkinson and N. Tjapkin, Annual Report, ISIS, Vol. II, Rutherford Appleton Laboratory, Didcot, UK, p. 331; and V. Mioč, Ph. Colomban, M. Davidovič and J. Tomkinson, J. Mol. Struct. (submitted).Google Scholar
  28. 28.
    M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand and M. Figlarz, J. Solid State Chem. 67 (1987) 235.CrossRefGoogle Scholar
  29. 29.
    F. A. Cotton and R. M. Wing, Inorg. Chem. 4 (1965) 867.CrossRefGoogle Scholar
  30. 30.
    A. Benmoussa, Ph. Labbe, D. Groult and B. Raveau, J. Solid State Chem. 44 (1982) 318.CrossRefGoogle Scholar
  31. 31.
    Ph. Labbe, M. Goreaud and B. Raveau, ibid. 61 (1986) 324.CrossRefGoogle Scholar
  32. 32.
    S. L. Wang, C. C. Wang and K. H. Lii, ibid. 82 (1989) 298.CrossRefGoogle Scholar
  33. 33.
    M. Pham-Thi and G. Velasco, Solid State Ionics 14 (1984) 217.CrossRefGoogle Scholar
  34. 34.
    P. Kerserho, Thesis, University of Paris (1982).Google Scholar
  35. 35.
    E. Papaconstantinou, D. Dimitikali and A. Politou, Inorg. Chem. Acta 46 (1980) 155.CrossRefGoogle Scholar
  36. 36.
    E. Papaconstatinou, J. Chem. Soc., Chem. Commun. (1982) 12.Google Scholar
  37. 37.
    G. M. Varga, E. Papaconstatinou and M. T. Pope, Inorg. Chem. 9 (1970) 662.CrossRefGoogle Scholar
  38. 38.
    H. Hayashi and J. B. Moffat, J. Catal. 77 (1982) 473.CrossRefGoogle Scholar
  39. 39.
    Idem., ibid. 83 (1983) 192.CrossRefGoogle Scholar
  40. 40.
    M. B. Varfolomeev, V.V. Burleaev, T. A. Toporenskaya, H. J. Lunk, W. Wilde und W. Hilmer, Z. Anorg. Allg. Chem. 472 (1981) 185.CrossRefGoogle Scholar
  41. 41.
    A. R. Siedle, T. E. Wood, M. L. Brostrom, D.C. Koskenmaki, B. Montez and E. Oldfield., J. Amer. Chem. Soc. 111 (1989) 1665.CrossRefGoogle Scholar
  42. 42.
    H.J. Lunk, M. B. Varfolomeev and W. Hilmer, Zh. Neorg. Khim., 28 (1983) 936.Google Scholar
  43. 43.
    E. Salje and K. Viswanathan, Acta Cryst. A 31 (1975) 356.CrossRefGoogle Scholar
  44. 44.
    E. Salje, ibid. 33 (1977) 574.CrossRefGoogle Scholar
  45. 45.
    R. Diehl, G. Brandt and E. Salje, Acta Cryst. B 34 (1978) 1105.CrossRefGoogle Scholar
  46. 46.
    W. L. Kehl, R. G. Hay and D. Wahl, J. Appl. Phys. 23 (1952) 212.CrossRefGoogle Scholar
  47. 47.
    B. Gerand, G. Nowogrocki, J. Guenot and M. Figlarz, J. Solid State Chem. 29 (1979) 429.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • U. B. Mioč
    • 1
  • R. Ž. Dimitrijević
    • 2
  • M. Davidović
    • 3
  • Z. P. Nedić
    • 4
  • M. M. Mitrović
    • 5
  • Ph. Colomban
    • 6
  1. 1.Faculty of Physical ChemistryUniversity of BelgradeBelgradeMacedonia
  2. 2.Faculty of Mining and Geology, Department of CrystallographyUniversity of BelgradeBelgradeMacedonia
  3. 3.The Institute of Nuclear Sciences “Vinča”BelgradeMacedonia
  4. 4.Faculty of Physical ChemistryUniversity of BelgradeBelgradeMacedonia
  5. 5.Faculty of PhysicsUniversity of BelgradeBelgradeMacedonia
  6. 6.Laboratoire de Spectrochimie Infrarouge et RamanCNRSThiaisFrance

Personalised recommendations