Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3673–3677 | Cite as

Ionic transport in the (Agl∶AgCl) mixed-system

  • R. C. Agrawal
  • R. K. Gupta
  • R. Kumar
  • Ajay Kumar
Article

Abstract

Ionic mobility, conductivity, number of charge carriers and transference number are reported for annealed and rapidly quenched [xAgl∶(1−x)AgCl] mixed systems, these results are compared with Agl. Of these three materials the quenched mixed-system had the highest Ag+ ion conductivity. Further, preliminary studies are reported where the high conductivity system (i.e. quenched 0.75 Agl∶0.25 AgCl) has been used as host material for the preparation of Ag+ ion conducting glasses and composites. Detailed thermal/phase diagram studies have also been carried out on the quenched composition. The conductivity enhancement in the quenched system is attributed to the formation of new disordered phases and the introduction of amorphisity, the simple space-charge model applicable to the annealed system failed to explain these results.

Keywords

Polymer Charge Carrier Material Processing Ionic Transport High Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Laskar and S. Chandra (eds) “Superionic solids and solid electrolytes — recent trends” (Academic Press, NY, 1989).Google Scholar
  2. 2.
    P. S. Nicholson, M. S. Whittingham, G. C. Farrington, W. W. Smeltzer and J. Thomas (eds) “Solid state ionics — 91” (North Holland. Amsterdam, 1992).Google Scholar
  3. 3.
    B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (eds) “Solid state ionics — materials and applications” (World Scientific, Singapore, 1992).Google Scholar
  4. 4.
    T. Minami and N. Machida, in “Solid state ionics international conference on advanced materials — 91”, edited by M. Balakanski, T. Takahashi and H. L. Tuller (Elsevier, Amsterdam, 1992) p. 91.Google Scholar
  5. 5.
    C. A. Angell, Solid State Ionics 18/19 (1986) 72.CrossRefGoogle Scholar
  6. 6.
    M. D. Ingram, Phys. Chem. Glasses 28 (1987) 215.Google Scholar
  7. 7.
    K. Shahi and J. B. Wagner jr, J. Phys. Chem. Solids 43 (1982) 713.CrossRefGoogle Scholar
  8. 8.
    J. Maier, in “Superionics solids and solid electrolytes — recent trends”, edited by A. L. Laskar and S. Chandra (Academic Press, NY, 1989) p. 137.CrossRefGoogle Scholar
  9. 9.
    A. K. Shukla and V. Sharma, in “Solid state ionics — materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 91.Google Scholar
  10. 10.
    U. Lauer and J. Maier, Solid State Ionics 51 (1992) 209.CrossRefGoogle Scholar
  11. 11.
    M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi and Z. Ontaki, J. Appl. Phys. 57 (1985) 123.CrossRefGoogle Scholar
  12. 12.
    S. Chandra, S. K. Tolpadi and S. A. Hashimi, Solid State Ionics 28/30 (1988) 651.CrossRefGoogle Scholar
  13. 13.
    R. C. Agrawal, K. Kathal, R. Chandola and R. K. Gupta, in “Solid state ionics — materials and applications”, edited by B. V. R. Chowdari, S. Chandra, S. Singh and P. C. Srivastava (World Scientific, Singapore, 1992) p. 363.Google Scholar
  14. 14.
    E. A. Secco, ibid.in “ p.46.Google Scholar
  15. 15.
    R. C. Agrawal, K. Kathal and R. K. Gupta, Unpublished work.Google Scholar
  16. 16.
    R. Kumar and R. C. Agrawal, Unpublished work.Google Scholar
  17. 17.
    R. K. Gupta and R. C. Agrawal, Unpublished work.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. C. Agrawal
    • 1
  • R. K. Gupta
    • 1
  • R. Kumar
    • 1
  • Ajay Kumar
    • 1
    • 2
  1. 1.Solid State Ionics Research Laboratory, School of Studies in PhysicsPt. Ravishankar Shukla UniversityRaipur-492 010, MPIndia
  2. 2.Physics Dept.BHUVaranasiIndia

Personalised recommendations