Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3665–3672 | Cite as

The effect of grain-boundary devitrification on the wear of glass-bonded alumina ceramics

  • M. A. Stough
  • J. R. Hellmann
  • J. C. ConwayJr
Article

Abstract

The steady-state wear behaviour of a 94 wt% alumina was investigated in the as-fired condition and after a post-sintering heat treatment. The post-sintering heat treatment yielded devitrification of the 6 wt% calcia-magnesia-alumino-silicate (CaO · MgO · Al2O3 · SiO2) glass grain-boundary phase. In addition, the effect of surface finishing on the wear behaviour of as-fired and heat-treated samples was studied. Steady-state wear rates were determined using a single-pin-on-disc tribometer. The results indicated that heat treated, unfinished samples exhibit a higher steady-state wear rate than as-fired, unfinished samples. The differences observed may arise in response to one or more of the following mechanisms: (i) creation of intergranular thermoelastic stresses due to thermal-expansion mismatch among intergranular species, (ii) elimination of the lubricative glass phase in devitrified specimens, and (iii) elimination of the advantageous effects of viscoplastic deformation of the intergranular glassy phase on stress relaxation. Surface finishing further increased the steady-state wear rate of the heat-treated samples only, and it correlated with an increase in subsurface microcracking and grain pull-out. A lubricative glass film was found to persist on all sample wear tracks, suggesting that the differences in wear behaviour are dominated by intergranular fracture and grain pull-out.

Keywords

Wear Track Wear Behaviour Intergranular Fracture Glassy Phase Alumina Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Cranmer, Tribol. Trans. 31 (1987) 164.CrossRefGoogle Scholar
  2. 2.
    X. Dong, R. S. Jahanmi and S. M. Hsu, J. Amer. Ceram. Soc. 74 (1991) 1036.CrossRefGoogle Scholar
  3. 3.
    Y. S. Wang, S. M. Hsu and R. G. Munro, Lubr. Engng 47 (1991) 49.Google Scholar
  4. 4.
    S. S. Cole Jr and H. W. Larisch, in “Advances in electron tube techniques”, edited by D. Slater, (Pergamon Press, New York, 1961).Google Scholar
  5. 5.
    M. E. Twentyman, J. Mater. Sci. 10 (1975) 765.CrossRefGoogle Scholar
  6. 6.
    S. S. Cole, Jr and F. J. Hynes, Bull. Amer. Ceram. Soc. 37 (1958) 135.Google Scholar
  7. 7.
    W. A. Kayser, M. Sprissler, C. A. Handwerker and J. E. Blendell, J. Amer. Ceram. Soc. 70 (1987) 339.CrossRefGoogle Scholar
  8. 8.
    O. H. Kwon and G. L. Messing, ibid. 67 (1984) C43.Google Scholar
  9. 9.
    L. Reed, in Proceedings of the Sixth National Conference on Tube Techniques, edited by D. Slater (Pergamon Press, New York, 1963) p. 15.Google Scholar
  10. 10.
    J. R. Hellmann, J. Matsko, S. W. Freiman and T. L. Baker, in Proceedings of the Twenty-First University Conference on Ceramic Science, The Pennsylvania State University, July 1985, edited by R. E. Tressler, G. L. Messing, C. G. Pantano and R. E. Newnham (Plenum Press, New York, 1985) p. 167.Google Scholar
  11. 11.
    J. R. Hellmann, S. W. Freiman, B. J. Hockey and T. L. Baker, J. Amer. Ceram. Soc. (submitted).Google Scholar
  12. 12.
    W. A. Zdaniewski and H. P. Kirchner, Adv. Ceram. Materials 1 (1986) 99.Google Scholar
  13. 13.
    N. A. Travitsky, D. G. Brandon and E. Y. Gutmanas, Mater. Sci. Engng 71 (1985) 65.CrossRefGoogle Scholar
  14. 14.
    Y. S. Wang, S. M. Hsu and R. G. Munro, Lubr. Engng 47 (1991) 63.Google Scholar
  15. 15.
    I. A. Cutter and R. McPherson, J. Amer. Ceram. Soc. 56 (1973) 266.CrossRefGoogle Scholar
  16. 16.
    R. McPherson, Wear 23 (1973) 83.CrossRefGoogle Scholar
  17. 17.
    P. F. Hlava, Sandia National Laboratories (1985) unpublished research.Google Scholar
  18. 18.
    B. J. Hockey, in Alumina Processing and Properties Characterization Workshop, Sandia National Laboratories, Report number SAND86-1224C, edited by J. R. Hellmann, p. 43.Google Scholar
  19. 19.
    R. H. Stutzman, J. R. Salvaggi and H. P. Kirchner, “Summary report on an investigation of the theoretical and practical aspects of the thermal expansion of ceramic materials”, Office of Technical Services, US Department of Commerce PB Washington DC 161826 (1959).Google Scholar
  20. 20.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics” (Wiley, New York, 1976).Google Scholar
  21. 21.
    M. Woydt and K. H. Habig, Trib. Int. 22 (1989) 78.CrossRefGoogle Scholar
  22. 22.
    J. L. Spodnik and J. J. Wert, Mat. Res. Symp. Proc. 140 (1989) 309.CrossRefGoogle Scholar
  23. 23.
    S. M. Hsu, Y. S. Wang and R. G. Munro, “Wear of materials”, (American Society for Mechanical Engineers, New York, 1989) 723.Google Scholar
  24. 24.
    N. P. Padture and H. M. Chan, J. Amer. Ceram. Soc. 75 (1992) 1870.CrossRefGoogle Scholar
  25. 25.
    C. A. Powell-Dogan and A. H. Heuer, ibid. 73 (1990) 3677.CrossRefGoogle Scholar
  26. 26.
    Idem., ibid. 73 (1990) 3684.CrossRefGoogle Scholar
  27. 27.
    C. A. Powell-Dogan, A. H. Heuer, M. J. Readey and K. Merriam, ibid. 74 (1991) 646.CrossRefGoogle Scholar
  28. 28.
    W. Wong-Ng, S. W. Freiman, C. R. Hubbard, B. J. Hockey, S. Weissmann and C. S. Lo, in Proceedings of the First International Conference on Ceramic Powder Processing Science, Orlando, FL, edited by G. L. Messing, E. R. Fuller Jr. and H. Hausner (The American Ceramic Society, Westerville, Ohio 1988) p. 1183.Google Scholar
  29. 29.
    S. W. Wiederhorn, B. J. Hockey and R. F. Krause Jr. and K. Jakus, J. Mater. Sci. 21 (1986) 810.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. A. Stough
    • 1
  • J. R. Hellmann
    • 1
  • J. C. ConwayJr
    • 1
  1. 1.Center for Advanced MaterialsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations