Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3658–3664 | Cite as

Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength

  • V. R. Mehta
  • S. Kumar
Article

Abstract

A simple arrangement for the measurement of torsional moduli of high performance fibres as a function of temperature has been reported. Torsional moduli and damping factors have been measured on a number of polymeric [Kevlar, poly(p-phenylene benzobisoxazole) (PBO), poly(p-phenylene benzobisthiazole) (PBZT) and Vectran] and carbon fibres [pitch and PAN based, and one bromine intercalated pitch based carbon fibre] as a function of temperature (room temperature to 150 °C, range) and as a function of vacuum level (1.1–80 ×103 Pa). At these vacuum levels damping in the fine fibres is mainly due to aerodynamic effects. In general PAN based carbon fibres have higher torsional moduli than pitch based carbon fibres. Kelvar 149, PBO and PBZT fibres have comparable room temperature torsional moduli, while the torsional modulus of Vectran fibre is very low, probably due to the torsional flexibility of the -COO- group. In the above temperature range, torsional moduli of both pitch and PAN based carbon fibres do not change significantly, while for polymeric fibres they decrease; a small decrease is observed for PBO and PBZT, and a significantly higher decrease is observed for Vectran. Relationships between compressive strength and torsional moduli have been discussed

Keywords

Compressive Strength Bromine Fine Fibre Vacuum Level Polymeric Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Greenwood and P. G. Rose, J. Mater. Sci. 9 (1974) 1809.CrossRefGoogle Scholar
  2. 2.
    H. T. Hahn, M. Sohi and S. Moon, “NASA Contractor Report 3988”, June 1986.Google Scholar
  3. 3.
    V. V. Kozey, V. R. Mehta, H. Jiang and S. Kumar, “Compression Behavior of Materials, Part II — High performance polymeric and carbon fibers”, to be published.Google Scholar
  4. 4.
    S. J. DeTeresa, Report No. AFWAL-TR-85-4013, Matls. Lab., WPAFB, Ohio.Google Scholar
  5. 5.
    S. R. Allen, Polymer 29 (1988) 1091.CrossRefGoogle Scholar
  6. 6.
    W. Sweeny, J. Polym. Sci., Polym. Chem. Ed. 30 (1992) 1111.CrossRefGoogle Scholar
  7. 7.
    D. J. Plazek, M. N. Vrancken and J. W. Berge, Trans. Soc. Rheol. II (1958) 39.CrossRefGoogle Scholar
  8. 8.
    N. Tokita, J. Polym. Sci. 20 (1956) 515.CrossRefGoogle Scholar
  9. 9.
    W. H. Gloor, Technical Report AFML-TR-72-65, Part I: Apparatus and Procedures (WPAFB, OH, 1972).Google Scholar
  10. 10.
    S. Seshadri, PhD Thesis, University of Washington, 1979.Google Scholar
  11. 11.
    A. J. Perry, B. Ineichen and B. Eliasson, J. Mater. Sci. Lett. 9 (1974) 1376.CrossRefGoogle Scholar
  12. 12.
    R. A. Adams and D. H. Lloyd, J. Phys. E: Scientific Instr. 8 (1975) 475.CrossRefGoogle Scholar
  13. 13.
    W. J. Welsh, D. Bhaumik, H. H. Jaff and J. E. Mark,Google Scholar
  14. 14.
    Idem., Macromol. 14 (1981) 951.CrossRefGoogle Scholar
  15. 15.
    P. J. Flory, “Statistical Mechanics of Chain molecules” (Wiley-Interscience, NY, 1969) p. 133.Google Scholar
  16. 16.
    H. Tadokoro, “Structure of Crystalline Polymers” (Wiley, NY, 1979) p. 398.Google Scholar
  17. 17.
    J. Heijboer, Br. Polym. J. 1 (1969) 3.CrossRefGoogle Scholar
  18. 18.
    Y. Termonia and P. Smith, in “High Modulus Polymers-Approaches to Design and Development” edited by A. E. Zachariades and R. S. Porter (Marcel Dekker, Inc., 1988) p. 353.Google Scholar
  19. 19.
    M. G. Northolt, Carbon 29 (1991) 1267.CrossRefGoogle Scholar
  20. 20.
    E. Fitzer, ibid. 27 (1989) 621.CrossRefGoogle Scholar
  21. 21.
    G. A. Lesieutre, A. J. Eckel and J. A. Dicarlo, ibid. 29 (1991) 1025.CrossRefGoogle Scholar
  22. 22.
    D. A. Jaworske, R. D. Vannucci and J. Zinolabedini, Compos. Mater. 21 (1987) 580.CrossRefGoogle Scholar
  23. 23.
    S. Kumar and T. E. Helminiak, Mater. Res. Soc. Symp. Proc. 134 (1989) 363.CrossRefGoogle Scholar
  24. 24.
    S. Kumar, V. R. Mehta, D. P. Anderson and A. S. Crasto, in “Thirty-seventh International SAMPE Symposium” (Covina, CA, 1992) p. 967.Google Scholar
  25. 25.
    S. Kumar, A. Crasto and D. P. Anderson, J. Mater. Sci. 28 (1993) 423.CrossRefGoogle Scholar
  26. 26.
    R. E. Wilfong and J. Zimmermann, J. Appl. Polym. Sci. Appl. Polym. Symp. 31 (1977) 1.Google Scholar
  27. 27.
    V. V. Kozey and S. Kumar, “Compression Behavior of Materials, Part III- Composites”, to be published.Google Scholar
  28. 28.
    D. Hull, “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1981) p. 161.Google Scholar
  29. 29.
    V. V. Kozey and S. Kumar, “Compression Behavior of Materials, Part I- Resins”, to be published.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. R. Mehta
    • 1
  • S. Kumar
    • 1
  1. 1.School of Textile & Fiber EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations