Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3630–3636 | Cite as

Effect of hot-pressing time and post-heat treatment on the microstructure and mechanical properties of SiC-fibre-reinforced glass-ceramic composites

  • Hyun -Ho Shin
  • Robert F. Speyer
Article

Abstract

Nicalon-SiC-fibre-reinforced (35 vol %) lithium-aluminosilicate (LAS) glass-ceramic composites were fabricated by a slurry-infiltration process followed by hot pressing at 1400°C and 10 MPa for varying soaking times. The ultimate strength and elastic modulus of the as-fabricated composites, as determined by four-point flexural tests, increased rapidly with the densification time, saturating after 30 min at 550 MPa and 130 GPa, respectively. Longer hotpressing times caused a decrease in the elastic modulus via fibre degradation. A carbon-rich interfacial layer formed between the fibres and the matrix, the thickness of which reached a maximum of ∼ 400 nm after ∼ 30 min soaking time. The flexural strength of post-heat-treated composites in air decreased by a factor of approximately four, due to oxidation and removal of the carbon content of the interfacial layer. The silica-rich bridges left behind between the fibres and the matrix contributed to brittle fracture of the composite.

Keywords

Polymer Microstructure Mechanical Property Brittle Elastic Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Brennan and P. M. Prewo, J. Mater. Sci. 17 (1987) 2371–83.CrossRefGoogle Scholar
  2. 2.
    R. F. Cooper and K. Chyung, ibid. 22 (1987) 3148–60.CrossRefGoogle Scholar
  3. 3.
    R. D. Veltri and F. S. Galasso, J. Amer. Ceram. Soc. 73 (1990) 2137–40.CrossRefGoogle Scholar
  4. 4.
    D. P. Stinton, A. J. Caputo and R. A. Lowden, Amer. Ceram. Soc. Bull. 65 (1986) 347–50.Google Scholar
  5. 5.
    T. Ishikawa and H. Teranishi, New Mater. New Proc. 1 (1981) 36–41.Google Scholar
  6. 6.
    R. A. Haber and R. M. Anderson, “Ceramics and glasses, engineered materials handbook”, Vol. 4, edited by J. Schneider Jr, (American Society for Metals, Metals Park, OH, 1991).Google Scholar
  7. 7.
    P. M. Benson, K. E. Spear and C. G. Pantano, Ceram. Engng. Sci. Proc. 9 (1988) 663–70.CrossRefGoogle Scholar
  8. 8.
    A. G. Evans, M. Y. He and J. W. Hutchison, J. Amer. Ceram. Soc. 72 (1989) 2300–303.CrossRefGoogle Scholar
  9. 9.
    M. D. Thouless, O. Sbaizero, L. Sigl and A. G. Evans, ibid. 72 (1989) 525–32.CrossRefGoogle Scholar
  10. 10.
    J. Aveston, G. A. Cooper and A. Kelly, “Single and multiple fracture”, in “Properties of fiber composite”, National Physical Laboratory Conference Proceedings (IPC Science and Technology Press, Guildford, England, 1971).Google Scholar
  11. 11.
    D. B. Marshall and A. G. Evans, J. Amer. Ceram. Soc. 68 (1985) 225–31.CrossRefGoogle Scholar
  12. 12.
    H. H. Shin, Y. Berta, C. Park and R. F. Speyer, Proceedings of the 50th Annual Meeting of the Electron Microscopy Society of America, edited by G. W. Bailey, J. Bentley and J. A. Small (San Francisco Press, San Francisco, 1992).Google Scholar
  13. 13.
    R. Chaim and A. H. Heuer, Adv. Ceram. Mater. 2 (1987) 154–58.CrossRefGoogle Scholar
  14. 14.
    J. Homeny, J. R. Van Valzah and M. A. Kelly, J. Amer. Ceram. Soc. 73 (1990) 2054–59.CrossRefGoogle Scholar
  15. 15.
    J. Y. Hsu and R. F. Speyer, J. Mater. Sci. 27 (1992) 374–80.CrossRefGoogle Scholar
  16. 16.
    R. Roy, D. M. Roy and E. F. Osborn, J. Amer. Ceram. Soc. 33 (1950) 152–159.CrossRefGoogle Scholar
  17. 17.
    Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials: D790–91, “Annual book of ASTM standards”, (American Society for Testing and Materials, Philadelphia, 1991).Google Scholar
  18. 18.
    K. K. Chawla, “Composite materials, sicence and engineering” (Springer-Verlag, New York, 1987) p. 46.CrossRefGoogle Scholar
  19. 19.
    J. Y. Hsu and R. F. Speyer, J. Amer. Ceram. Soc. 74 (1991) 395–99.CrossRefGoogle Scholar
  20. 20.
    K. M. Prewo, J. J. Brennan and G. K. Layden, Amer. Ceram. Soc. Bull. 65 (1986) 305–13, 322.Google Scholar
  21. 21.
    J. Y. Hsu and R. F. Speyer, J. Mater. Sci. 27 (1992) 381–90.CrossRefGoogle Scholar
  22. 22.
    T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, ibid.J. Mater. Sci. 19 (1984) 1191–1201.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Hyun -Ho Shin
    • 1
  • Robert F. Speyer
    • 1
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations