Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3612–3620 | Cite as

Information given by slow melting on phase content and maximum drawability of high molecular weight polyethylene films

  • H. Phuong-Nguyen
  • G. Delmas
Article

Abstract

The technique of slow melting (v = 1 Kh−1) used previously on nascent high molecular weight PE (UHMWPE) is now applied to films prepared in different solvents. Besides the expected endotherm of fusion of the orthorhombic crystals, new endotherms and phase changes are observed at low and high temperature. The total enthalpy of phase change is near the enthalpy of melting of perfect orthorhombic crystals. The new endotherms with slower kinetics can be distinguished on the melting trace from the melting of the orthorhombic crystals. The trace permits the definition of a calorimetric phase composition of a sample. The different films have the same amount of orthorhombic crystals but different phase compositions. Their maximum drawability λmax is solvent-dependent and varies between 260 (n-C12) and 60 (trichlorobenzene). The comparison of calorimetric spectra and values λmax suggests the existence of an optimum in the range of phase-change temperatures to obtain a high λmax. The melting traces of drawn films show that the temperature of the high- T sendotherms is lowered by drawing. The phase content of nascent UHMWPE is dramatically changed by melting-recrystallization. The origin of the non-orthorhombic phase changes is discussed.

Keywords

Enthalpy High Molecular Weight Phase Composition Phase Change Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Phuong-Nguyen and G. Delmas, Macromolecules 30 (1992) 414.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 30 (1992) 408.CrossRefGoogle Scholar
  3. 3.
    Idem, Thermochim. Acta (1994).Google Scholar
  4. 4.
    P. Bernazzini, M.Sc. Thesis, (UQAM, Montreal, 1994).Google Scholar
  5. 5.
    X. Zhang, I. Lapes, H. Phuong-Nguyen, unpublished work.Google Scholar
  6. 6.
    A. Zwijnenburg and A. J. Pennings, Colloid Polym. Sci. 253 (1975) 452.CrossRefGoogle Scholar
  7. 7.
    Idem, ibid. 254 (1976) 868.CrossRefGoogle Scholar
  8. 8.
    H. Phuong-Nguyen, PhD thesis, McGill University, Canada (1991).Google Scholar
  9. 8b.
    H. Phuong-Nguyen and G. Delmas, J. of Solution Chem. 23 (1994) 249.CrossRefGoogle Scholar
  10. 9.
    P. J. Barham and A. Keller, Polym. Lett. 17 (1979) 591.CrossRefGoogle Scholar
  11. 10.
    Idem, ibid., J. Mater. Sci. 15 (1980) 2229.CrossRefGoogle Scholar
  12. 11.
    P. Smith and P. J. Lemstra, Makromol. Chem. 180 (1979) 2983.CrossRefGoogle Scholar
  13. 12.
    Idem, J. Mater. Sci. 15 (1980) 505.CrossRefGoogle Scholar
  14. 13.
    Idem, Polymer 21 (1980) 134.CrossRefGoogle Scholar
  15. 14.
    Idem, J. Colloid Polym. Sci. 258 (1980) 891.CrossRefGoogle Scholar
  16. 5.
    W. T. Mead, C. R. Desper and R. S. Porter, J. Polym. Sci., Polym Phys. Ed. 17 (1979) 859.CrossRefGoogle Scholar
  17. 16.
    G. Capaccio, A. G. Gibson and I. M. Ward, in “Ultra High Modulus Polymers”, edited by A. Cifferi and I. M. Ward (Applied Science, London, 1979) p. 1.Google Scholar
  18. 17.
    H. Van Der Werff and A. J. Pennings, Colloid Polym. Sci. 269 (1991) 747.CrossRefGoogle Scholar
  19. 18.
    T. Ogita, N. Suzuki, Y. Kawahare and M. Matsuo, Polym. J. 33 (1992) 698.CrossRefGoogle Scholar
  20. 19.
    C. Sawatari, T. Okumura and M. Matsuo, Polym. J. 18 (1986) 741.CrossRefGoogle Scholar
  21. 20.
    T. Ogita, N. Suzuki, F. Ozaki and M. Matsuo, Polymer 32 (1991) 822.CrossRefGoogle Scholar
  22. 21.
    T. Kanamoto, K. Tsuruta, K. Tanaka, M. Takeda and R. S. Porter, Polym. J. 15 (1983) 327.CrossRefGoogle Scholar
  23. 22.
    K. Furuhata, T. Yokokawa, Ch. Seoul and K. Miyasaka, J. Polym. Sci., Polymer Phys. Ed. 24 (1986) 59.CrossRefGoogle Scholar
  24. 23.
    L. H. Wang, S. Ottari and R. S. Porter, Polymer 32 (1991) 1776.CrossRefGoogle Scholar
  25. 24.
    G. J. Delmas, Polym. Sci., Polym. Phys. Ed. 31 (1993) 2011.CrossRefGoogle Scholar
  26. 25.
    R. Kitamaru, F. Horii and K. Murayama, Macromolecules 19 (1986) 636.CrossRefGoogle Scholar
  27. 26.
    T. Bremmer and A. Rudin, J. Polym. Sci. Polym. Phys. Ed. 30 (1992) 1247.CrossRefGoogle Scholar
  28. 27.
    A. J. Waddon and A. Keller, ibid. 28 (1990) 1063.CrossRefGoogle Scholar
  29. 28.
    J. Clements, G. Cappacio and I. M. Ward, J. Polym. Sci., Polym. Phys. Ed. 17 (1979) 693.CrossRefGoogle Scholar
  30. 29.
    N. S. Murphy, S. T. Correale and S. Kavesh, Polym. Commun. 31 (1990) 50.Google Scholar
  31. 30.
    J. Smook and A. J. Pennings, Colloid Polym. Sci. 262 (1984) 712.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • H. Phuong-Nguyen
    • 1
  • G. Delmas
    • 1
  1. 1.Département de chimieUniversité du Québec à MontréalMontréalCanada

Personalised recommendations