Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3607–3611 | Cite as

Measurements of spacing of sliding grain boundaries

  • M. G. Zelin
  • A. K. Mukherjee
Article

Abstract

The spacing of grain boundaries at which grain boundary sliding (GBS) had occurred during superplastic (SP) deformation was determined by measuring the length of segments of marker lines inscribed on the pre-polished surface in Pb-62%Sn after superplastic deformation in shear. Statistical distribution of this segment length (L) was bimodal at low strain levels, but became unimodal at high strain levels. The concept of cooperative GBS, i.e. sliding of groups of grains as an entity, has been invoked to explain the evaluation of the L-distribution with strain. This investigation suggests that the real spacing of sliding grain boundaries should be taken into account for modelling of SP flow.

Keywords

Polymer High Strain Material Processing Strain Level Real Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Padmanabhan and G. C. Davies, “Superplasticity” (Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
  2. 2.
    J. Pilling and N. Ridley “Superplasticity in crystalline solids” (Institute of Metals, London, 1989).Google Scholar
  3. 3.
    R. N. Stevens, Trans. Metal. Soc. AIME 236 (1966) 1762.Google Scholar
  4. 4.
    Y. Ishida, A. W. Mullendore and N. J. Grant, Trans. Metal. Soc. AIME 230 (1969) 1454.Google Scholar
  5. 5.
    R. V. Vastava and T. G. Langdon, Acta Metall. 27 (1979) 251.CrossRefGoogle Scholar
  6. 6.
    N. Furushiro and S. Hori, Scripta Metall. 13 (1979) 653.CrossRefGoogle Scholar
  7. 7.
    R. S. Gates and R. N. Stevens, Metall. Trans. 5A (1974) 505.CrossRefGoogle Scholar
  8. 8.
    T. R. Bieler and A. K. Mukherjee, J. Mater. Sci 25 (1990) 4025.CrossRefGoogle Scholar
  9. 9.
    G. Rai and N. J. Grant, Metall. Trans. A 19A (1983) 1451.CrossRefGoogle Scholar
  10. 10.
    C. L. Harmsworth, in “Metals handbook”, 9th Edn, edited by J. R. Newby (coordinator) (American Society for Metals, Metals Park, OH, USA, 1985) p. 62Google Scholar
  11. 11.
    M. G. Zelin, A. K. Mukherjee, M. Dunlap and R. Rosen, J. Appl. Phys. 74 (1993) 4972.CrossRefGoogle Scholar
  12. 12.
    B. Baudelet and M. Suery, J. Mater. Sci. 7 (1972) 512.CrossRefGoogle Scholar
  13. 13.
    S. T. Lam, A. Arieli and A. K. Mukherjee, Mater. Sci. and Engng. 40 (1979) 73.CrossRefGoogle Scholar
  14. 14.
    A. K. Mukherjee, J. E. Bird and J. E. Dorn, ASM Trans. Quart. 62 (1969) 155.Google Scholar
  15. 15.
    V. E. Panin, V. A. Likhachev and Y. V. Grinyaev, “Structural levels of solid states strains” (Nauka, Novowibirsk, 1985) (in Russian).Google Scholar
  16. 16.
    M. G. Zelin and A. K. Mukherjee, J. Mater. Sci. 28 (1993) 6767.CrossRefGoogle Scholar
  17. 17.
    A. A. Presnaykov, “Deformation zone during metals forming” (Nauka, Alma-Ata, 1988) (in Russian).Google Scholar
  18. 18.
    M. G. Zelin and M. V. Elexandrova, in “Superplasticity in advanced materials”, edited by S. Hori, M. Tokizane and N. Furushioro (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991) p. 63.Google Scholar
  19. 19.
    H. S. Yang, M. G. Zelin, R. Z. Valiev and A. K. Mukherjee, Scripta. Metal et Materialia 26 (1992) 1707.CrossRefGoogle Scholar
  20. 20.
    M. G. Zelin, R. Z. Valiev, M. W. Grabski, J. W. Wyzykowski, H. S. Yang and A. K. Mukherjee, Mater. Sci. Engng. A160 (1993) 215.CrossRefGoogle Scholar
  21. 21.
    J. J. Gilman, “Micromechanisms of flow in solids” (McGraw-Hill, NY, 1969).Google Scholar
  22. 22.
    Kulman-Wilsdorf, Mater. Sci. Engng. A113 (1988) 1.Google Scholar
  23. 23.
    M. G. Zelin and A. K. Mukherjee, in “Aspects of high temperature deformation and fracture in crystalline materials” edited by Y. Hosoi, H. Yoshinaga, H. Oikawa and K. Maruyama (The Japan Institute of Metals, Nagoya, Japan, 1993) p. 455.Google Scholar
  24. 24.
    B. Burton, Phil. Mag. A 48 (1993) L9.CrossRefGoogle Scholar
  25. 25.
    T. G. Langdon, Mater. Sci. Engng. A137 (1991) 1.CrossRefGoogle Scholar
  26. 26.
    T. G. Langdon, Mater. Sci. Engng. A166 (1993) 67.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. G. Zelin
    • 1
  • A. K. Mukherjee
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations