Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3601–3606 | Cite as

Silica fracture

Part I A ring contraction model
  • J. K. West
  • L. L. Hench
Article

Abstract

A quantitative ring contraction model for the fracture of amorphous silica is described based upon AM-1 semiempirical molecular orbital calculations of strained three- and four-fold silica rings and a five-fold ring-chain structure. The fracture barrier for five-fold ring-chain structures is 103 kcal mol−1. The barrier for fracture of a three-fold ring is 96 kcal mol−1. Fracture by contraction of four-fold rings has a lower energy barrier of 77 kcal mol−1 due to formation of pentacoordinate silicon transition states which produce trisiloxane rings and a broken siloxane bond. Thus, the ring contraction model predicts that a crack will follow a path which depends on the distribution of four-fold (or larger) rings in vacuum or fast fracture.

Keywords

Silicon Transition State Energy Barrier Material Processing Siloxane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Inglis, Trans. Inst. Nav. Arch. 55 (1913) 219.Google Scholar
  2. 2.
    A. A. Griffith, Trans. R. Soc. Lond. 221 (1921) 163.CrossRefGoogle Scholar
  3. 3.
    S. W. Freiman, in “Glass Science and Technology”, Vol. 5, “Elasticity and Strength in Glass”, edited by D. R. Uhlmann and N. J. Kreidl (Academic Press, New York, 1980) pp. 21–79.Google Scholar
  4. 4.
    J. H. Simmons, T. P. Swiler and Romulo Ochoa, J. Non-Cryst, Solids 134 (1991) 179.CrossRefGoogle Scholar
  5. 5.
    J. J. Mecholsky Jr and S. W. Freiman, J. Am. Ceram. Soc. 74 (1991) 3136.CrossRefGoogle Scholar
  6. 6.
    T. A. Michalske and B. C. Bunker, J. Appl. Phys. 56 (1984) 2686.CrossRefGoogle Scholar
  7. 7.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.CrossRefGoogle Scholar
  8. 8.
    M. J. S. Dewar and C. Jie, J. Am. Chem. Soc. 6 (1987) 1486.Google Scholar
  9. 9.
    MOPAC Version 6.1, Tektronix, Inc., CaChe Scientific, Beaverton, OR.Google Scholar
  10. 10.
    L. P. Davis and L. W. Burggraf, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1988) p. 367.Google Scholar
  11. 11.
    L. W. Burggraf, L. P. Davis, and M. S. Gordon, in “Ultrastructure Processing of Advanced Materials”, edited by D. R. Uhlmann and D. R. Ulrich (Wiley, New York, 1992) p. 47.Google Scholar
  12. 12.
    M. S. Gordon, Iowa State University (1993), private communication.Google Scholar
  13. 13.
    F. L. Galeener, J. Non-Cryst. Solids 49 (1982) 53.CrossRefGoogle Scholar
  14. 14.
    A. G. Revesz and G. V. Gibbs, in “The Physics of MOS Insulators”, edited by G. Lucousky, S. T. Pantelides and F. L. Galeener (Pergamon, New York, 1980) pp. 92–6.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. K. West
    • 1
  • L. L. Hench
    • 1
  1. 1.Advanced Materials Research Center, Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations