Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3591–3600 | Cite as

Influence of casting and heat treatment parameters in controlling the properties of an Al-10 wt% Si-0.6 wt% Mg/SiC/20p composite

  • A. M. Samuel
  • F. H. Samuel
Article

Abstract

The influence of melting, casting and heat treatment parameters in determining the quality and tensile properties of an Al-10wt% Si-0.6wt% Mg/SiC/20p composite in comparison to its base alloy (359) has been studied. For the composite, melt-temperature, hydrogen level, and the cleanliness and stirring procedure, control, respectively, the harmful melt reactions of the SiC reinforcement with the alloy matrix, gas porosity, inclusion and oxide-film contamination, whereas casting conditions are mainly controlled through the use of a proper mold temperature and appropriate mold coating materials that enhance the feedability and reduce or eliminate the effects of shrinkage. The beneficial effect of the SiC reinforcement particles is two-fold: 1. they act as preferential sites for the nucleation of the eutectic silicon particles, leading to an overall refinement of the latter and lowering the amount of strontium modifier required from 150 to 90 ppm to achieve the same level of refinement in the as-cast microstructures of both composite and base alloy; 2. their presence also results in a more uniform redistribution of the silicon particles in the as-cast structure (cf. the large, irregular interdendritic regions of eutectic silicon observed in the base alloy). Both composite and base alloy exhibit a similar heat treatment response with respect to tensile properties for the various heat treatments applied. Addition of 20 vol% SiC to the base alloy (359) is seen to increase the Young's modulus and yield strength by 30–40%, marginally affect the ultimate tensile strength, but reduce the ductility by almost 80%.

Keywords

Strontium Ultimate Tensile Strength Base Alloy Mold Temperature Silicon Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Apelien, S. Shivkumar and G. Sigworth, AFS Trans. 97 (1989) 727.Google Scholar
  2. 2.
    S. Shivkumar, S. Ricci, B. Steenhoff, D. Apelien and G. Sigworth, AFS Trans. 97 (1989) 791.Google Scholar
  3. 3.
    D. E. Hammond, AFS Trans. 97 (1989) 887.Google Scholar
  4. 4.
    F. H. Samuel, A. M. Samuel and H. Liu, AFS Trans. (in press).Google Scholar
  5. 5.
    C. Dupuis, Z. Wang, J.-P. Martin and C. Allard, Light Met. (1992) 1055–68.Google Scholar
  6. 6.
    ASTM Standards, “Standard specification for aluminum alloy permanent mold castings”, 02.02 (1990) 104.Google Scholar
  7. 7.
    A. M. Samuel, H. Liu and F. H. Samuel, Compos. Sci. Technol. 49 (1993) 1.CrossRefGoogle Scholar
  8. 8.
    J. Boutin and C. E. Gallernaut, Report no. AR-89/0028, Arvida R&D Centre, Alcan International Limited, Jonquière, Québec, Canada, July 1989.Google Scholar
  9. 9.
    R. Provencher, G. Riverin and C. Celik, “Advances in production and fabrication of light metals and metal matrix composites”, edited by M. Avedesian, L. J. Larouche and J. Masounave (The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 1992) p. 589.Google Scholar
  10. 10.
    D. L. Rose, B. M. Cox and M. D. Skibo, AFS Trans. (in press).Google Scholar
  11. 11.
    A. D. McLeod, in Proceedings of the ASM International Conference on Fabrication of Particulates Reinforced Metal Composites, Montreal, September 16–19, 1990, p. 25.Google Scholar
  12. 12.
    C. E. Ransley and D. E. J. Talbot, J. Inst. Met. 84 (1955–56) 445.Google Scholar
  13. 13.
    Q. T. Fang and D. A. Granger, AFS Trans. 97 (1989) 989.Google Scholar
  14. 14.
    H. Liu and F. H. Samuel, AFS Trans. (in press).Google Scholar
  15. 15.
    A. M. Samuel and F. H. Samuel, Metall. Trans. A 24A (1993) 1857.CrossRefGoogle Scholar
  16. 16.
    F. H. Samuel, H. Liu and A. M. Samuel, Metall. Trans. A 24A (1993) 1631.CrossRefGoogle Scholar
  17. 17.
    H. Liu and F. H. Samuel, Internal report, Arvida R&D Centre, Alcan International Limited, October 1991.Google Scholar
  18. 18.
    D. Asselin, M. Bouchard and R. Provencher, “Development and applications of ceramic and new metal alloys”, edited by R. A. L. Drew and M. Mostaghaci (The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 1993) p. 233.Google Scholar
  19. 19.
    N. Wang, Z. Wang and G. C. Weatherly, Metall. Trans. A 23A (1992) 1423.CrossRefGoogle Scholar
  20. 20.
    F. H. Samuel and A. M. Samuel, Metall. Trans. A (in press).Google Scholar
  21. 21.
    Y. Flom and R. J. Arsenault, Acta Metall. 37 (1989) 2413.CrossRefGoogle Scholar
  22. 22.
    F. Paray and J. E. Gruzleski, Cast Metals 5 (1993) 187.CrossRefGoogle Scholar
  23. 23.
    M. Taya, K. E. Lulay and D. J. Lloyd, Acta Metall. Mater. 39 (1991) 73.CrossRefGoogle Scholar
  24. 24.
    R. W. Bruner, in the Proceedings of the Conference “Heat treatment of Al-alloy castings: The state of the art”, Detroit, MI, 1979, 209.Google Scholar
  25. 25.
    M. Tsukuda, S. Koike and K. Asano, J. Jpn. Inst. Light Metals 28 (1978) 531.CrossRefGoogle Scholar
  26. 26.
    G. S. Ghate, K. S. Raman and K. S. S. Murthy, in Proceedings of the Conference “International conference on aluminum-85 (INCAL)”, New Delhi, India, 1985, 485.Google Scholar
  27. 27.
    J.-P. Cottu, J.-J. Coudere, B. Viguier and L. Bernard, J. Mater. Sci. 27 (1992) 3068.CrossRefGoogle Scholar
  28. 28.
    F. H. Samuel and A. M. Samuel, Unpublished work.Google Scholar
  29. 29.
    B. Chamberlain and V. J. Zabek, AFS Trans. 81 (1973) 322.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • A. M. Samuel
    • 1
  • F. H. Samuel
    • 1
  1. 1.Département des Sciences AppliquéesUniversité du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations