Advertisement

Journal of Materials Science

, Volume 29, Issue 14, pp 3577–3590 | Cite as

Abnormal grain growth in alumina-doped hafnia ceramics

  • J. Wang
  • C. B. Ponton
  • P. M. Marquis
Article

Abstract

Hafnia (HfO2) ceramics containing 0.0, 5.0, and 10.0 vol% Al2O3, respectively, were sintered at 1600°C for various periods from 2–24 h. Abnormal grain growth was found to occur in the Al2O3-containing compositions. Hafnia containing 5.0 vol% Al2O3 exhibits an average grain size of almost double that of the Al2O3-free hafnia matrix, coupled with a much wider grain-size distribution. The material containing 10.0 vol% Al2O3 shows a smaller average grain size than the composition containing 5.0 vol% Al2O3. However, its average grain size is still larger than that of the Al2O3-free hafnia on sintering at 1600°C for more than 8 h. Microstructural characterization, carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive analysis facility (EDX), indicated that there existed a continuous segregant layer at the grain boundaries and grain junctions in the Al2O3-free hafnia. Hafnia exhibits a low solubility in the segregant layer phase which inhibits the growth of the hafnia grains. The Al2O3 particles act as a scavenger for the silicon-rich glassy phase, damaging the continuous nature of the boundary segregant layer and promoting grain growth in the Al2O3-doped hafnia ceramics. The microstructural development at the sintering temperature is an overall result of the concurrent scavenger effect and grain pinning by the Al2O3 particles.

Keywords

Grain Size Transmission Electron Microscopy Al2O3 Sinter Temperature Microstructural Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature (Lond.) 258 (1975) 703.CrossRefGoogle Scholar
  2. 2.
    J. Wang, H. P. Li and R. Stevens, J. Mater. Sci. 27 (1992) 5397.CrossRefGoogle Scholar
  3. 3.
    R. Ruh and W. R. Corfield, J. Am. Ceram. Soc. 53 (1970) 126.CrossRefGoogle Scholar
  4. 4.
    H. J. Garrett, Am. Ceram. Soc. Bull. 42 (1963) 201.Google Scholar
  5. 5.
    J. Wang and R. Stevens, Ceram. Acta. 3 (1991) 41.Google Scholar
  6. 6.
    S. L. Dole, O. Hunter Jr and F. W. Calderwood, J. Am. Ceram. Soc. 63 (1980) 136.CrossRefGoogle Scholar
  7. 7.
    S. L. Dole, O. Hunter Jr and C. J. Wooge, ibid. 60 (1977) 488.CrossRefGoogle Scholar
  8. 8.
    F. F. Lange, J. Mater. Sci. 17 (1982) 225.CrossRefGoogle Scholar
  9. 9.
    H. Bernard, Report CEA-R-5090. Commissariat a l'Energie Atomique, CEN-Saclay, France (1981).Google Scholar
  10. 10.
    E. P. Butler and J. Drennan, J. Am. Ceram. Soc. 65 (1982) 474.CrossRefGoogle Scholar
  11. 11.
    R. Stevens, “An introduction to zirconia” (Magnesium Elektron, Twickenham, UK, 1986).Google Scholar
  12. 12.
    C. E. Curtis and H. G. Sowman, J. Am. Ceram. Soc. 36 (1953) 190.CrossRefGoogle Scholar
  13. 13.
    M. Ruhle, N. Claussen and A. H. Heuer, in “Advances in Ceramics,” Vol. 12, “Science and technology of zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984 pp. 352–70.Google Scholar
  14. 14.
    H. Schubert, N. Claussen and M. Ruhle, ibid.“Advances in Ceramics,” Vol.12, “Science and technology of zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984 p. 766–773.Google Scholar
  15. 15.
    A. J. A. Winnubst, G. S. A. Theunissen, W. F. M. Groot Zevert and A. J. Burggraaf, in “Science of ceramics,” Vol. 14, edited by D. Taylor (Institute of Ceramics, Stoke-on-Trent, UK, 1988) pp. 309–14.Google Scholar
  16. 16.
    T. Stoto, M. Nauer and C. Carry, J. Am. Ceram. Soc. 74 (1991) 2615.CrossRefGoogle Scholar
  17. 17.
    K. Keizer, M. J. Verkerk and A. J. Burggaaf, Ceram. Int. 5 (1979) 143.CrossRefGoogle Scholar
  18. 18.
    R. W. Rice, S. W. Freiman and P. F. Becher, J. Am. Ceram. Soc. 64 (1981) 345.CrossRefGoogle Scholar
  19. 19.
    R. W. Rice and S. W. Freiman, ibid. 64 (1981) 350.CrossRefGoogle Scholar
  20. 20.
    R. W. Davidge, Acta Metall. 29 (1981) 1695.CrossRefGoogle Scholar
  21. 21.
    F. A. Nichols, J. Appl. Phys. 37 (1966) 4599.CrossRefGoogle Scholar
  22. 22.
    F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 70 (1987) 827.CrossRefGoogle Scholar
  23. 23.
    A. V. Shevchenko, L. M. Lopato and G. I. Gerasimyuk, Izv. Akad. Nauk, SSSR. Neorg. Mat. 26 (1990) 839.Google Scholar
  24. 24.
    S. G. Popov, M. V. Paromova and Z. Ya Kulikova, ibid.Izv. Akad. Nauk, SSSR. Neorg. Mat. 26 (1990) 1002.Google Scholar
  25. 25.
    K. C. Radford and R. J. Bratton, J. Mater. Sci. 14 (1979) 59.CrossRefGoogle Scholar
  26. 26.
    K. Niihara, J. Ceram. Soc. Jpn 99 (1991) 945.CrossRefGoogle Scholar
  27. 27.
    F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 67 (1984) 164.CrossRefGoogle Scholar
  28. 28.
    S. Hori, R. Kurita, M. Yoshimura and S. Somiya, in “Advances in Ceramics, Vol. 24A, “Science and technology of zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramics Society, Westerville, OH, 1988) pp. 423–9.Google Scholar
  29. 29.
    M. R. Anseau, J. P. Biloque and P. Fierens, J. Mater. Sci. 11 (1976) 578.CrossRefGoogle Scholar
  30. 30.
    J. S. Reed, “Introduction to the principles of ceramic processing” (Wiley, Singapore, 1989).Google Scholar
  31. 31.
    N. M. Beekmans and L. Heyne, Electrochim. Acta 21 (1976) 303.CrossRefGoogle Scholar
  32. 32.
    A. J. G. Ellison and A. Navrotsky, J. Am. Ceram. Soc. 75 (1992) 1430.CrossRefGoogle Scholar
  33. 33.
    I. A. Aksay, D. M. Dabbs and M. Sarikaya, ibid. 74 (1991) 2343.CrossRefGoogle Scholar
  34. 34.
    R. F. Davis and J. A. Pask, in “High temperature oxides”, Part IV, “Refractory glasses, glass-ceramics and ceramics,” edited by A. M. Alper (Academic Press, New York, 1970) pp. 37–76.Google Scholar
  35. 35.
    R. R. Dayal, R. E. Johnson and A. Muan, J. Am. Ceram. Soc. 50 (1967) 537.CrossRefGoogle Scholar
  36. 36.
    E. Di Rupo and M. R. Anseau, J. Mater. Sci. 15 (1980) 114.CrossRefGoogle Scholar
  37. 37.
    M. L. Mecartney, J. Am. Ceram. Soc. 70 (1987) 54.CrossRefGoogle Scholar
  38. 38.
    Y. Yoshizawa and T. Sakuma, ibid. 73 (1990) 3069.CrossRefGoogle Scholar
  39. 39.
    J. F. Shackelford, P. S. Nicholson and W. W. Smeltzer, Am. Ceram. Soc. Bull. 53 (1974) 865.Google Scholar
  40. 40.
    R. Chaim, A. H., Heuer and D. G. Brandon, J. Am. Ceram. Soc. 69 (1986) 243.CrossRefGoogle Scholar
  41. 41.
    F. F. Lange, ibid. 69 (1986) 240.CrossRefGoogle Scholar
  42. 42.
    S. Dou, P. D. Pacey, C. R. Masson and B. R. Marple, ibid. 68 (1985) C-80.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. Wang
    • 1
  • C. B. Ponton
    • 1
  • P. M. Marquis
    • 1
  1. 1.IRC in Materials for High Performance Applications and School of Metallurgy and Materials and School of DentistryThe University of BirminghamBirminghamUK

Personalised recommendations