Advertisement

Journal of Materials Science

, Volume 29, Issue 10, pp 2813–2820 | Cite as

X-ray diffraction study of mechanically alloyed amorphous-crystalline titanium silicides

  • N. Zotov
  • D. Parlapanski
Papers

Abstract

The structure of mechanically alloyed (MA) Ti-Si powders has been investigated by means of X-ray diffraction radial distribution functions analysis and computer-generated quasi-crystalline models. It was established that the investigated samples with compositions Ti33Si67 and Ti42Si58 consist of an amorphous matrix, with chemical short-range order (SRO) similar to that of the TiSi phase, in which crystallites of the Ti5Si3 and Ti5Si4 phases are embedded. For the composition Ti44Si56, the SRO resembles the structural arrangement in the Ti5Si3 phase. An attempt has been made to explain these results using the formation enthalpies of the amorphous and the crystalline phases formed in earlier stages of MA. The Ti5Si4 and Ti5Si3 phases have a much lower formation enthalpy than the other Ti-Si phases. That is why the amount of mechanical energy imparted during MA is not sufficient completely to drive the amorphization in these two phases.

Keywords

Titanium Radial Distribution Mechanically Alloy Mechanical Energy Radial Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Benjamin, Sci. Am. 234 (5) (1976) 40.CrossRefGoogle Scholar
  2. 2.
    R. Sundaresan and F. H. Froes, J. Metals 39 (1987) 22.Google Scholar
  3. 3.
    R. L. White, PhD thesis, Stanford University (1979).Google Scholar
  4. 4.
    C. C. Koch, O. B. Carin, C. G. McCamey and J. O. Scarbrough, Appl. Phys. Lett. 43 (1983) 1017.CrossRefGoogle Scholar
  5. 5.
    R. B. Schwarz, R. R. Petrich and C. K. Saw, J. Non-Cryst. Solids 76 (1985) 281.CrossRefGoogle Scholar
  6. 6.
    L. Schultz and E. Hellstern, in “Materials Research Society Symposium Proceedings”, Vol. 80 (Materials Research Society, Pittsburgh, PA, 1987).Google Scholar
  7. 7.
    E. Hellstern and L. Schultz, J. Appl. Phys. 63 (1988) 1408.CrossRefGoogle Scholar
  8. 8.
    T. Fukunaga, K. Nakamura, K. Suzuki and U. Mizutani, J. Non-Crystalline Solids 117/118 (1990) 700.CrossRefGoogle Scholar
  9. 9.
    T. Fukunaga, M. Mori, K. Inou and U. Mizutani, Mater. Sci. Eng. A, in press.Google Scholar
  10. 10.
    Y. Ogino, S. Murayama and T. Yamasaki, J. Less-Common Metals 168 (1991) 221.CrossRefGoogle Scholar
  11. 11.
    A. W. Weeber and H. Bakker, Z. Chem. Phys. N. F. 157 (1988) 221.CrossRefGoogle Scholar
  12. 12.
    R. B. Schwarz and C. C. Koch, Appl. Phys. Lett. 49 (1986) 146.CrossRefGoogle Scholar
  13. 13.
    G. V. Samsonov, L. A. Dvorina and B. M. Rud, “Silicides” (Metallurgia, Moscow, 1979) p. 73 (in Russian).Google Scholar
  14. 14.
    S. P. Murarka, “Silicides for VSLI application” (Academic Press, New York, 1983).Google Scholar
  15. 15.
    V. A. Reuter (ed.), “Catalitic Properties of the Substances. A Handbook”, Vol. II, Book I (Naukova Dumka, Kiev, 1975) (in Russian).Google Scholar
  16. 16.
    D. E. Polk, A. Calka and B. C. Giessen, Acta Metall. 26 (1978) 223.CrossRefGoogle Scholar
  17. 17.
    K. Holloway and R. Sinclair, J. Less-Common Metals 140 (1988) 139.CrossRefGoogle Scholar
  18. 18.
    I. J. M. M. Raaijmakers, A. H. van Omen and A. H. Reader, J. Appl. Phys. 65 (1989) 3896.CrossRefGoogle Scholar
  19. 19.
    G. Veltl, B. Scholz and H. D. Kunze, in “Proceedings of the DGM Conference on New Materials by Mechanical Alloying Techniques”, edited by E. Arzt and L. Schultz (Deutsche Gesellschaft fur Metallkunde e.v., 1989) p. 79.Google Scholar
  20. 20.
    D. Parlapanski, S. Denev, S. Ruseva and E. Gatev, J. Less-Common Metals 171 (1991) 231.CrossRefGoogle Scholar
  21. 21.
    A. Calka, A. P. Radlinski, R. A. Shanks and A. P. Pogany, J. Mater. Sci. Lett. 10 (1991) 43.CrossRefGoogle Scholar
  22. 22.
    A. C. Wright, Adv. Struct. Devel. Diffr. Methods 5 (1974) 1.Google Scholar
  23. 23.
    J. Krogh-Moe, Acta Crystallogr. 9 (1956) 951.CrossRefGoogle Scholar
  24. 24.
    H. H. M. Balynzi. ibid. A 31 (1975) 600.CrossRefGoogle Scholar
  25. 25.
    D. T. Cromer and J. B. Man, ibid. A 24 (1968) 321.CrossRefGoogle Scholar
  26. 26.
    D. T. Cromer, ibid. 18 (1965) 17.CrossRefGoogle Scholar
  27. 27.
    E. Lorch. J. Phys. C 2 (1969) 229.CrossRefGoogle Scholar
  28. 28.
    R. Kaplow, B. L. Averbach and S. L. Strong, J. Phys. Chem. Solids 25 (1964) 1195.CrossRefGoogle Scholar
  29. 29.
    N. Zotov, in “Proceedings of 2nd National Conference on X-ray Diffraction Methods”. Primorsko, May 1984 (Sofia University Press, Sofia. 1985) pp. 134–9.Google Scholar
  30. 30.
    O. M. Barabash and N. Koval, “dCrystal Structure of Metal and Alloys” (Naukova Dumka, Kiev, 1986) p. 553 (in Russian).Google Scholar
  31. 31.
    J. J. Nickl and K. Schweitzer, Z. Metallkde 61 (1970) 55.Google Scholar
  32. 32.
    M. Hansen, H. D. Kessler and D. J. McPherson, Trans. Am. Soc. Metall. 44 (1952) 518.Google Scholar
  33. 33.
    C. Brukl, H. Novotny, O. Schob and F. Benesovski, Mh. Chem. 92 (1961) 781.Google Scholar
  34. 34.
    K. Novotny, B. Lux and H. Kudielka, ibid. 87 (1956) 447.Google Scholar
  35. 35.
    N. Ageev and V. Samsonov, Dokl. Acad. Nauk SSSR 112 (1957) 853.Google Scholar
  36. 36.
    W. Ro Teutscher and K. Schubert, Z. Metallkde 56 (1965) 813.Google Scholar
  37. 37.
    V. N. Svechnikov, U. A. Kocherzinskii, L. M. Upko, O. G. Kulik and E. A. Shishkin, Dokl. Acad. Nauk SSSR 193 (1970) 393.Google Scholar
  38. 38.
    P. Pietrokowski and P. Duwez, J. Metals 3 (1951) 772.Google Scholar
  39. 39.
    J. J. Nickl and H. Sprenger, Z. Metallkde 60 (1969) 136.Google Scholar
  40. 40.
    H. Sprenger and J. J. Nickl, Naturwiss. 54 (1967) 645.CrossRefGoogle Scholar
  41. 41.
    F. Laves and H. J. Wallbaum, Z. Kristallogr. A 101 (1939) 78.Google Scholar
  42. 42.
    H. Nowotny, H. Schroth, R. Kieffer and F. Benesovsky, Mh. Chem. 84 (1953) 582.Google Scholar
  43. 43.
    G. Cotter, J. A. Kohn and R. A. Potter, J. Am. Ceram. Soc. 39 (1956) 1.CrossRefGoogle Scholar
  44. 44.
    T. Masumoto, Y. Waseda, H. Kimura and A. Inoue, Sci. Rep. RITU A 26 (1976) 21.Google Scholar
  45. 45.
    K. Sudzuki, H. Fujimori and K. Hasimoto, “Amorphous Metals”, Translated from Japanese (Metallurgia, Moscow, 1987) (in Russian).Google Scholar
  46. 46.
    M. Taylor, J. Appl. Crystallogr. 12 (1979) 442.CrossRefGoogle Scholar
  47. 47.
    U. M. Golutvin, J. Phis. Khim. 30 (1956) 2251.Google Scholar
  48. 48.
    P. I. Loeff, A. W. Weeber and A. R. Miedema, J. Less-Common Metals 140 (1988) 299.CrossRefGoogle Scholar
  49. 49.
    P. I. Loeff, H. Bakker and F. R. de Boer, in “Proceedings of the DGM Conference on New Materials by Mechanical Alloying Techniques”, edited by E. Arzt and L. Schultz (Deutsche Gesellschaft fur Metallkunde e.v., 1989) p. 119.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • N. Zotov
    • 1
  • D. Parlapanski
    • 2
  1. 1.Institute of Applied MineralogyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Mineral ProcessingUniversity of Mining and GeologySofiaBulgaria

Personalised recommendations