Advertisement

Journal of Materials Science

, Volume 29, Issue 10, pp 2775–2783 | Cite as

A glass-bonded ceramic material from chrysotile (white asbestos)

  • K. J. D. Mackenzie
  • R. H. Meinhold
Papers

Abstract

A process has been developed for bonding chrysotile asbestos into a robust, dimensionally-stable lightweight ceramic material by fusing it with sodium silicate and/or ground waste glass. The chrysotile can retain its desirable properties of fibrous morphology and porosity, but the fibre bundles are stabilized by fusion into a glassy matrix, reducing the respirable fibre concentration. The glass-bonded materials have good resistance to mechanical abrasion, and any resulting dust is found by SEM to be particularly free of fibres. The thermal treatment also converts the chrysotile into crystalline forsterite, which should destroy its cell toxicity. Other methods of glass-bonding chrysotile compacts (hot pressing and impregnating with glaze) were also investigated, and the properties of the resulting materials are reported.

Keywords

Dust Ceramic Material Fibre Bundle Asbestos Desirable Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. C. W. Skinner, M. Ross and C. Frondel, “Asbestos and Other Fibrous Materials” (Oxford University Press, New York, 1988).Google Scholar
  2. 2.
    A. A. Hodgeson (ed.), “Alternatives to Asbestos- the Pros and Cons”, Society of the Chemical Industry Critical Reports on Applied Chemistry, Vol. 26 (Wiley, Chichester, 1989).Google Scholar
  3. 3.
    N. H. Brett, K. J. D. MacKenzie and J. H. Sharp, Q. Rev. Chem. Soc. 24 (1970) 185.CrossRefGoogle Scholar
  4. 4.
    K. J. D. MacKenzie and R. H. Meinhold, unpublished results (1992).Google Scholar
  5. 5.
    H. Hoelter, M. Hagenkoetter and K. Robock, German Pat. DE 3914 533 (1990).Google Scholar
  6. 6.
    L. Filini and L. Calzavacca, Eur. Pat. Appl. EP 344563 (1989).Google Scholar
  7. 7.
    H. Wozniak, E. Wiecek and A. Owecka, Med. Pr. 37 (1986) 139.Google Scholar
  8. 8.
    H. Hayashi, K. Koshi and H. Sakabe, in “Proceedings of the International Clay Conference”, Tokyo, 1969, Vol. 1 (Israel University Press, Jerusalem, 1969) p. 903.Google Scholar
  9. 9.
    P. A. Pezzolini, US Pat. 979 008 (1979).Google Scholar
  10. 10.
    J. M. Lalancette, M. Cossette and P. Delvaux, US Pat. 4495223 (1985).Google Scholar
  11. 11.
    J. A. Bennett, E. A. Schweikert, D. Poisson and C. Jolicoeur, Surf. Interface Anal. 15 (1990) 651.CrossRefGoogle Scholar
  12. 12.
    W. Mirrick and W. B. Forrister, Int. Pat. WO90 15642 (1990).Google Scholar
  13. 13.
    K. J. D. MacKenzie, I. W. M. Brown, P. Ranchod and R. H. Meinhold, J. Mater. Sci. 26 (1991) 763.CrossRefGoogle Scholar
  14. 14.
    M. M. Frocht, “Photoelasticity”, Vol. 2 (Wiley, New York, 1948) p. 121.Google Scholar
  15. 15.
    G. de With and H. H. M. Wagemans, J. Am. Ceram. Soc. 72 (1989) 1538.CrossRefGoogle Scholar
  16. 16.
    M. N. Giovan and G. Sines, ibid. 62 (1979) 510.CrossRefGoogle Scholar
  17. 17.
    M. Magi, E. Lippmaa, A. Samosan, G. Engelhardt and A-R. Grimmer, J. Phys. Chem. 88 (1984) 1518.CrossRefGoogle Scholar
  18. 18.
    J. S. Hartman and R. L. Millard, Phys. Chem. Minerals 17 (1990) 1.CrossRefGoogle Scholar
  19. 19.
    K. A. Smith, R. J. Kirkpatrick, E. Oldfield and D. M. Henderson, Am. Mineral. 68 (1983) 1206.Google Scholar
  20. 20.
    B. L. Sherriff, H. D. Grundy and J. S. Hartman, Eur. J. Mineral. 3 (1991) 751.CrossRefGoogle Scholar
  21. 21.
    T. G. Carruthers and B. Scott, Trans. Brit. Ceram. Soc. 67 (1968) 185.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. J. D. Mackenzie
    • 1
  • R. H. Meinhold
    • 1
  1. 1.New Zealand Institute for Industrial Research and DevelopmentLower HuttNew Zealand

Personalised recommendations