Journal of Materials Science

, Volume 29, Issue 10, pp 2725–2733 | Cite as

EXAFS and molecular modelling studies of Rb1−xBixF1+2x

  • P. A. Cox
  • C. R. A. Catlow
  • A. V. Chadwick


The fluorite structured mixed metal fluorides Rb1−xBixF1+2x (0.5≤x≥0.75) are exceptionally good F ion conductors, a property which is clearly related to the mixed nature of the cation sub-lattice. Extended X-ray absorption fine structure (EXAFS) has been used to study the local structure of the two types of cation in Rb1−xBixF1+2x as a function of x. The results reveal marked differences for the local environments of Rb+ and Bi3+. Considerable short-range order develops as x deviates from 0.5, and this can be correlated with the relative conductivities of these materials. Molecular dynamics (MD) has been used to yield complementary information on structural properties. Simulations were performed for a series of temperatures between 80 K and 750 K. Excellent agreement between EXAFS and MD is obtained. A non-collinear interstitialcy mechanism is proposed for anion diffusion, which is seen to be the basis for more complex concerted processes.


Fluoride Molecular Dynamic Fluorite Excellent Agreement Molecular Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Reau, S. F. Matar and J-L. Soubeyroux, Solid State Ionics 9&10 (1983) 563.CrossRefGoogle Scholar
  2. 2.
    S. F. Matar, PhD thesis, University of Bordeaux, Bordeaux (1983).Google Scholar
  3. 3.
    W. M. C. I. Jordan, PhD thesis, University of London, London (1989).Google Scholar
  4. 4.
    J. W. Pierce and Y. H-P. Hong, in “Proceedings of the 10th rare earth research conference carefree”, edited by C. J. Kevane and T. Moeller, Vol. A2 (NTIS, Springfield, Va, 1973) p. 527.Google Scholar
  5. 5.
    E. A. Stern in “Chem. anal”. 92 (X-ray Absorpt.) (New York, 1988) p. 3.Google Scholar
  6. 6.
    P. A. Lee, P. H. Citrin, P. Eisenberger and B. M. Kincaid, Rev. Mod. Phys. 53 (1981) 769.CrossRefGoogle Scholar
  7. 7.
    T. M. Hayes and J. B. Boyce, Solid State Physics 37 (1984) 173.CrossRefGoogle Scholar
  8. 8.
    M. J. Gillan, Physica 131B (1985) 157.Google Scholar
  9. 9.
    E. Pantos and D. Firth, in “EXAFS and near edge structure”, edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlag, Berlin, 1983) p. 110.CrossRefGoogle Scholar
  10. 10.
    C. R. A. Catlow, A. V. Chadwick, G. N. Greaves and L. M. Moroney, Nature 312 (1984) 601.CrossRefGoogle Scholar
  11. 11.
    J. R. Walker in “Computer simulation of solids”, edited by C. R. A. Catlow and W. C. Mackrodt (Springer-Verlag, Berlin, 1982) p. 65.Google Scholar
  12. 12.
    C. R. A. Catlow, M. J. Norgett and T. A. Ross, J. Phys. C10 (1977) 1627.Google Scholar
  13. 13.
    M. J. Gillan and M. Dixon, ibid. C13 (1980) 1901.Google Scholar
  14. 14.
    C. R. A. Catlow, Solid State Ionics 8 (1983) 89.CrossRefGoogle Scholar
  15. 15.
    M. J. Gillan, in “Solid state ionics '83”, edited by H. Kloitz, B. Sapoval and D. Ravaire (Amsterdam, North Holland, 1983) p. 755.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • P. A. Cox
    • 1
  • C. R. A. Catlow
    • 2
  • A. V. Chadwick
    • 3
  1. 1.Department of ChemistryUniversity of PortsmouthPortsmouthUK
  2. 2.Royal Institution of Great BritainLondonUK
  3. 3.Department of ChemistryUniversity of Kent at CanterburyCanterburyUK

Personalised recommendations