Advertisement

Journal of Materials Science

, Volume 29, Issue 10, pp 2704–2712 | Cite as

Surface roughness and impact strength of injection-moulded polystyrene

  • T. H. Lee
  • N. J. Mills
Papers

Abstract

The formation of regular surface waves in injection moulded polystyrene was investigated as a function of the moulding conditions and the molecular weight distribution of the polymer. The injection velocity and the position of measurement relative to the gate of the mould have the greatest effect on the average roughness measured with a Talysurf machine. The packing pressure has only a minor effect in reducing the roughness. It is proposed that the waves occur if there is time for surface buckling in the fountain flow at the melt front. The waves are shown to have negligible effect on the unnotched impact strength, which is dominated by molecular orientation, so the waves merely detract from the surface appearance of the moulding.

Keywords

Surface Roughness Polystyrene Surface Wave Material Processing Weight Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Spender and G. D. Gilmore, Modern Plastics 28 (1950) 97.Google Scholar
  2. 2.
    G. B. Jackson and R. L. Ballman, SPE. J. 16 (1960) 1147.Google Scholar
  3. 3.
    R. L. Ballman and H. L. Toor, Modern Plastics 38 (1960) 113.Google Scholar
  4. 4.
    J. L. S. Wales, J. Van Leeiwan and R. Van Der Vigh, Polym. Eng. Sci. 12 (1972) 358.CrossRefGoogle Scholar
  5. 5.
    N. J. Mills, Plast. Rubber Proc. Appl. 3 (1983) 181.Google Scholar
  6. 6.
    K. N. Hunt, J. R. G. Evans and N. J. Mills, J. Mater. Sci. 26 (1991) 5229.CrossRefGoogle Scholar
  7. 7.
    H. Hogberg, Modern Plastics 33 (1955) 150.Google Scholar
  8. 8.
    C. D. Han and C. A. Villamizar, Polym. Eng. Sci. 18 (1978) 173.CrossRefGoogle Scholar
  9. 9.
    W. Dietz, J. L. White and E. S. Clark, ibid. 18 (1978) 273.CrossRefGoogle Scholar
  10. 10.
    J. L. White and W. Dietz, ibid. 19 (1979) 1081.CrossRefGoogle Scholar
  11. 11.
    J. L. White, ibid. 15 (1975) 44.CrossRefGoogle Scholar
  12. 12.
    D. Hands, Rubber Chem. Technol. 50 (1977) 480.CrossRefGoogle Scholar
  13. 13.
    N. J. Mills, J. Mater. Sci. 17 (1982) 558.CrossRefGoogle Scholar
  14. 14.
    N. J. Mills and P. S. Zhang, ibid. 24 (1989) 2099.CrossRefGoogle Scholar
  15. 15.
    R. P. Kambour, J. Polym. Sci. Macromolec. Rev. 7 (1973) 1.CrossRefGoogle Scholar
  16. 16.
    N. J. Mills, Eur. Polym. J. 5 (1969) 675.CrossRefGoogle Scholar
  17. 17.
    L. J. Broutman and S. M. Krishnakumar, Polym. Eng. Sci. 16 (1976) 74.CrossRefGoogle Scholar
  18. 18.
    M. S. Kamal and V. Tan, ibid. 19 (1979) 58.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. H. Lee
    • 1
  • N. J. Mills
    • 1
  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK

Personalised recommendations