Advertisement

Journal of Materials Science

, Volume 29, Issue 10, pp 2671–2677 | Cite as

Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites

  • Chen -Tsu Fu
  • Jenn -Ming Wu
  • Ai -Kang Li
Papers

Abstract

Al2O3 matrix with three grades of Cr3C2 particle size (0.5, 1.5 and 7.5 μm) composites were fabricated by a hot-pressing technique. Fully dense compacts with Cr3C2 content up to 40 vol % can be acquired at 1400 °C under 30 MPa pressure for 1 h. The flexural strength increases from 595 to 785 Mpa for fine Cr3C2 particle (0.5 μm) reinforced Al2O3 matrix composites. The fracture strength is significantly dependent on the fracture modes of matrix (intergranular or transgranular). The transgranular fracture with a compressive residual stress gives a high fracture strength of composites. At the same time, the fracture toughness increases from 5.2 MPa m1/2 (10 vol % Cr3C2) to 8.0 MPa m1/2 (30 vol % Cr3C2) for the coarse Cr3C2 particle (7.5 μn) reinforced Al2O3 matrix composites. The toughening effects of incorporating Cr3C2 particles into Al2O3 matrix originate from crack bridging and deflection. The electrical conductivity and the possibility of electrical discharge machining of these composites were also investigated.

Keywords

Residual Stress Fracture Toughness Flexural Strength Electrical Discharge Machine Fracture Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Cutler and K. M. Rigtrup, J. Amer. Ceram. Soc. 75 (1992) 36.CrossRefGoogle Scholar
  2. 2.
    C. H. Jung and C. H. Kim, J. Mater. Sci. 26 (1991) 5037.CrossRefGoogle Scholar
  3. 3.
    M. Bengisu and O. T. Inal, Ceram. Int. 17 (1991) 187.CrossRefGoogle Scholar
  4. 4.
    R. A. Cutler and A. C. Hurford, Mater. Sci. Engng, A105/106 (1988) 183.CrossRefGoogle Scholar
  5. 5.
    N. F. Petrofes and A. M. Gadalla, Amer. Ceram. Soc. Bull. 67 (1988) 1048.Google Scholar
  6. 6.
    B. Cales, C. Martin and P. Vivier, in Proceedings of the Third International Symposium of Ceramic Materials and Components for Engines, Las Vegas, Nevada, November 1988, edited by V. J. Tennery (The American Ceramic Society, Westerville, OH, 1989) p. 1189.Google Scholar
  7. 7.
    A. Bellosi, G. D. Portu and S. Guicciardi, J. Eur. Ceram. Soc. 10 (1992) 307.CrossRefGoogle Scholar
  8. 8.
    E. Klar, in “Metals Handbook”, 9th edition, Vol. 7 (American Society for Metals, Metals Park, Ohio, 1984) p. 804.Google Scholar
  9. 9.
    M. Ando and H. Awaji, Taikabutsu 41 (1989) 239.Google Scholar
  10. 10.
    F. F. Lange, J. Mater. Res. 2 (1987) 59.CrossRefGoogle Scholar
  11. 11.
    R. K. Bordia and G. W. Scherer, Acta Metall. 36 (1988) 2393.CrossRefGoogle Scholar
  12. 12.
    S. Sundaresan and L. A. Aksay, J. Amer. Ceram. Soc. 73 (1990) 54.CrossRefGoogle Scholar
  13. 13.
    J. Wang and R. Raj, ibid. 74 (1991) 1959.CrossRefGoogle Scholar
  14. 14.
    F. F. Lange and M. M. Hirlinger, ibid. 67 (1984) 164.CrossRefGoogle Scholar
  15. 15.
    K. Niihara, A. Nakahira and M. Inove, in “Better Ceramics Through Chemistry”, edited by M. J. Hampdensmith, W. G. Klemperer and C. J. Brinker (Materials Research Society Symposium Proceedings, Vol. 271, Pittsburgh, P.A., 1992) p. 589.Google Scholar
  16. 16.
    L. C. Stearns, J. Zhao and M. P. Harmer, J. Eur. Ceram. Soc. 10 (1992) 473.CrossRefGoogle Scholar
  17. 17.
    C. S. Smith, Trans. Metall. Soc. AIME 175 (1949) 15.Google Scholar
  18. 18.
    P. F. Becher, J. Amer. Ceram. Soc. 74 (1991) 255.CrossRefGoogle Scholar
  19. 19.
    A. G. Evans, ibid. 73 (1990) 187.CrossRefGoogle Scholar
  20. 20.
    R. W. Davidge, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 447.Google Scholar
  21. 21.
    P. L. Gutshall and G. E. Gross, Eng. Frac. Mech. 1 (1969) 463.CrossRefGoogle Scholar
  22. 22.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976) p. 177.Google Scholar
  23. 23.
    A. G. Evans and R. M. Mcmeeking, Acta Metall 34 (1986) 2435.CrossRefGoogle Scholar
  24. 24.
    F. Erdogan and P. F. Joseph, J. Amer. Ceram. Soc. 72 (1989) 262.CrossRefGoogle Scholar
  25. 25.
    P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, ibid. 71 (1988) 1050.CrossRefGoogle Scholar
  26. 26.
    D. R. Clarke, ibid. 75 (1992) 739.CrossRefGoogle Scholar
  27. 27.
    G. Rajagopal and M. Satyam, J. Appl. Phys. 49 (1978) 5536.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Chen -Tsu Fu
    • 1
    • 2
  • Jenn -Ming Wu
    • 1
  • Ai -Kang Li
    • 2
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Material Research LaboratoriesIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations