Journal of Materials Science

, Volume 29, Issue 10, pp 2663–2670 | Cite as

Non-equilibrium segregation of solutes to grain boundary

Part III Mechanism of non-equilibrium segregation
  • Sanhong Zhang
  • Xinlai He
  • T. Ko


Mechanisms for the non-equilibrium segregation of solutes to static grain boundary during cooling (quenching-induced segregation) and to moving grain boundary during recrystallization (moving-induced segregation) are proposed. For quenching-induced segregation, in consideration of the local equilibrium among vacancies, solute atoms and vacancy-solute atom complexes, as well as the influence of equilibrium grain-boundary segregation, the theoretical dynamic formulae for this non-equilibrium segregation have been derived on the basis of the vacancy-dragging mechanism. Theoretical calculations have been carried out for the non-equilibrium segregation of boron to austenitic grain boundaries during isothermal holding and continuous cooling after heating at high temperature; the results agree well with those obtained from experiments. The model has also successfully explained the different behaviours of boron segregation during cooling in α-Fe and in γ-Fe. For moving-induced segregation, based on the interaction between dislocations and the moving boundaries during recrystallization, a dislocation relaxation and widening grain-boundary mechanism of solute segregation on moving boundaries is proposed. Applying this model, we have calculated the boron segregation on moving boundaries during recrystallization in Fe-3% Si alloy; the results of these calculations agree with experimental results.


Polymer Boron Recrystallization Theoretical Calculation Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. L. He, Y. Y. Chu and J. J. Jonas, Acta Metall. 37 (1989) 147.CrossRefGoogle Scholar
  2. 2.
    J. H. Westbrook and K. T. Aust, ibid. 11 (1963) 1151.CrossRefGoogle Scholar
  3. 3.
    K. T. Aust, R. E. Hasseman, P. Niessen and J. H. Westbrook, ibid. 16 (1968) 291.CrossRefGoogle Scholar
  4. 4.
    X. L. He, M. Djahaji, J J. Jonas and J. Jackman, Acta Metall. Mater. 39 (1991) 2295.CrossRefGoogle Scholar
  5. 5.
    T. Takeyama, H. Takahashi and S. Ohnuki, in “Grain Boundary Structure and Related Phenomena”, Proceedings of Fourth Japan Institute of Metals International Symposium (Japan Institute of Metals,1986), p. 401.Google Scholar
  6. 6.
    M. B. Kasen, Acta Metall. 31 (1983) 489.CrossRefGoogle Scholar
  7. 7.
    X. L. He, Y. Y. Chu and J. J. Jonas, ibid. 37 (1989) 2905.CrossRefGoogle Scholar
  8. 8.
    S. H. Zhang, X. L. He, Y. Y. Chu and T. Ko, Acta Metall. Sinica 28A (1992) 187.Google Scholar
  9. 9.
    L. Karlsson, Acta Metall. 30 (1988) 25.CrossRefGoogle Scholar
  10. 10.
    A. F. Smith and G. B. Gibbs, J. Met. Sci. 2 (1968) 47.CrossRefGoogle Scholar
  11. 11.
    J. A. Hudson and R. S. Nelson, “Vacancies '76” (Metal Society, London 1977) p. 126.Google Scholar
  12. 12.
    P. E. Busby, M. E. Warga and C. Wells, Trans. AIME 197 (1953) 1463.Google Scholar
  13. 13.
    T. M. Williams, A. M. Stoneham and D. R. Harries, J. Met. Sci. 10 (1976) 14.CrossRefGoogle Scholar
  14. 14.
    M. J. Doyama, J. Nucl. Mater. 69, 70 (1978) 350.CrossRefGoogle Scholar
  15. 15.
    A. F. Rowcliffe and R. B. Nicholson, Acta Metall. 20 (1972) 143.CrossRefGoogle Scholar
  16. 16.
    M. A. V. Champman and R. G. Faulkner, ibid. 31 (1983) 677.CrossRefGoogle Scholar
  17. 17.
    J. W. Miller, Phys. Rev. 188 (1969) 1074.CrossRefGoogle Scholar
  18. 18.
    W. F. Jandeska Jr. and J. E. Morral, Met. Trans. 3 (1972) 2933.CrossRefGoogle Scholar
  19. 19.
    R. W. Ballufi, “Grain Boundary Structure and Kinetics” (American Society of Metals, Metals Park, Ohio, 1980) p. 297.Google Scholar
  20. 20.
    L. Karlsson, H. Norden and H. Odelius, Acta Metall. 36 (1988) 1.CrossRefGoogle Scholar
  21. 21.
    S. H. Zhang, Ph. D Thesis, University of Science and Technology, Beijing, 1922.Google Scholar
  22. 22.
    S. H. Zhang, X. L. He, Y. Y. Chu and T. Ko, J. Mater. Sci. 29 (1994).Google Scholar
  23. 23.
    S. H. Zhang, X. L. He and T. Ko, J. Mater. Sci. 29 (1994).Google Scholar
  24. 24.
    J. W. Cahn, Acta Metall. 10 (1962) 789.CrossRefGoogle Scholar
  25. 25.
    D. McLean, “Grain Boundaries in Metals” (Oxford University Press, Oxford, 1957) p. 116.Google Scholar
  26. 26.
    K. Kurzydolski, J. W. Wyrzykowski and G. Garbacz, Phys. Met. Metall. 65 (1988) 163.Google Scholar
  27. 27.
    S. H. Zhang, X. L. He and T. Ko, (Submitted to Acta Metall. Sinica).Google Scholar
  28. 28.
    R. Bullough and V. K. Tewary, in “Dislocations in Solids, Vol. 2: Dislocations in Crystals”, edited by F. R. N. Nabarro (North-Holland, 1979) p. 58.Google Scholar
  29. 29.
    M. W. Grabski and R. Korski, Phil. Mag. 22(1970) 707.CrossRefGoogle Scholar
  30. 30.
    M. W. Grabski and J. W. Wyrzykowski, Mater. Sci. Engng 44 (1980) 229.CrossRefGoogle Scholar
  31. 31.
    P. H. Pumphery and H. Gleiter, Phil. Mag. 32 (1975) 881.CrossRefGoogle Scholar
  32. 32.
    R. A. Varin, Phys. Status Solidi 52 (1979) 337.CrossRefGoogle Scholar
  33. 33.
    E. A. Brandes (ed) “Smithells Metals Reference Book”, 6th edn, (Butterworth, 1983) p. 13.Google Scholar
  34. 34.
    T. Abe, K. Tsakada, H. Tagawa and I. Kozassa, Tetsu-to-Hagane (Iron and Steel) 74 (1988) 2201 (in Japanese).CrossRefGoogle Scholar
  35. 35.
    M. Hillert and G. R. Purdy, Acta Metall. 26 (1978) 333.CrossRefGoogle Scholar
  36. 36.
    K. Smidoda, W. Gottschalk and H. Gleiter, ibid. 26 (1978) 1833.CrossRefGoogle Scholar
  37. 37.
    D. A. Smith, Ultramicroscopy 29 (1989) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Sanhong Zhang
    • 1
  • Xinlai He
    • 1
  • T. Ko
    • 1
  1. 1.Department of Materials PhysicsUniversity of Science and Technology BeijingBeijingP. R. China

Personalised recommendations