Advertisement

Journal of Materials Science

, Volume 29, Issue 10, pp 2611–2619 | Cite as

Carbothermal formation of β′-sialon from kaolinite and halloysite studied by 29Si and 27Al solid state MAS NMR

  • K. J. D. Mackenzie
  • R. H. Meinhold
  • G. V. White
  • C. M. Sheppard
  • B. L. Sherriff
Papers

Abstract

27Al and 29Si magic-angle spinning(MAS) nuclear magnetic resonance(NMR)and complementary X-ray diffraction (XRD) studies of carbothermal formation of sialons from kaolinite and halloysite confirm that the reaction involves the initial formation of mullite (3Al2O3·2SiO2) and amorphous silica. In the presence of carbon, Si-N bonds are formed at ≈1200 °C, giving a continuum of silicon oxynitride compositions which become progressively more N-rich. These do not become sufficiently ordered to be detected by XRD until later in the reaction, when crystalline silicon oxynitride, possibly containing a little Al (O′-sialon) and x-phase sialon are formed, followed by β′-sialon. The O′- and x-phase sialons are transitory, but the β′-sialon persists throughout the reaction. Si-O bonds survive the destruction of the mullite and persist throughout the reaction, especially with kaolinite starting material. The 29Si MAS NMR results indicate that Si-C bonds are formed later in the reaction than previously suggested, the SiC phase behaving more like a secondary product than a transitory intermediate. Al-N bonds are not detectable by 27Al MAS NMR until very late in the reaction (after 8 h firing at 1400 °C), and coincide with the appearance of the secondary product AlN. The implications for the carbothermal reaction sequence in kaolinite and halloysite are discussed.

Keywords

Nuclear Magnetic Resonance Kaolinite Amorphous Silica Sialon Nuclear Magnetic Resonance Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Lee and I. B. Cutler, Amer. Ceram. Soc. Bull. 58 (1979) 869.Google Scholar
  2. 2.
    D. S. Perera, J. Aust. Ceram. Soc. 23 (1987) 11.Google Scholar
  3. 3.
    M. E. Bowden, K. J. D. Mackenzie and J. H. Johnston, Mater. Sci. Forum, 34–36 (1988) 599.Google Scholar
  4. 4.
    J. B. Baldo, V. C. Pandolfelli and J. R. Casarini, in Materials Science Monographs 16 (Ceramic Powders), edited by P. Vincenzini (Elsevier, Amsterdam, 1983), p. 437.Google Scholar
  5. 5.
    Y. Sugahara, K. Kuroda and C. Kato, J. Amer. Ceram. Soc. 67 (1984) C247.CrossRefGoogle Scholar
  6. 6.
    I. Higgins and A. Hendry, Proc. Brit. Ceram. Soc. 38 (1986) 163.Google Scholar
  7. 7.
    M. E. Bowden, Private communication.Google Scholar
  8. 8.
    K. J. D. Mackenzie, I. W. M. Brown, R. H. Meinhold and M. E. Bowden, J. Amer. Ceram. Soc. 68 (1985) 293.CrossRefGoogle Scholar
  9. 9.
    G. S. Neal, M. E. Smith, M. B. Trigg and J. Drennan, in Proceedings of the International Ceramics Conference, Australia, 1992 (Austceram 92), Vol. 1, (Ed. M. J. Bannister, CSIRO, Melbourne, 1992), p. 533.Google Scholar
  10. 10.
    G. D. Soraru, A. Ravagni, R. Campostrini and F. Babonneau, J. Amer. Ceram. Soc. 74 (1991) 2220.CrossRefGoogle Scholar
  11. 11.
    J. M. Thomas, J. Klinowski, P. A. Wright and R. Roy, Angew Chem., Int. Ed. Engl. 22 (1983) 614.CrossRefGoogle Scholar
  12. 12.
    K. J. D. Mackenzie, I. W. M. Brown, R. H. Meinhold and M. E. Bowden, J. Amer. Ceram. Soc. 68 (1985) 266.CrossRefGoogle Scholar
  13. 13.
    L. H. Merwin, A. Sebald, H. Roger and H. Schneider, Phys. Chem. Minerals 18 (1991) 47.CrossRefGoogle Scholar
  14. 14.
    J. S. Hartman, M. F. Richardson, B. L. Sherriff and B. G. Winsborrow, J. Amer. Chem. Soc. 109 (1987) 6059.CrossRefGoogle Scholar
  15. 15.
    J. R. Guth and T. Petusky, J. Phys. Chem. 91 (1987) 5361.CrossRefGoogle Scholar
  16. 16.
    K. R. Carduner and R. O. Carter III, Ceram. Int. 15 (1989) 327.CrossRefGoogle Scholar
  17. 17.
    K. E. Inkrott, S. M. Wharry and D. J. O'Donnell, Mater. Res. Symp. Proc. 73 (1986) 165.CrossRefGoogle Scholar
  18. 18.
    R. Dupree, M. H. Lewis, G. Leng-Ward and D. S. Williams, J. Mater. Sci. Lett. 4 (1985) 393.CrossRefGoogle Scholar
  19. 19.
    J. Klinowski, J. M. Thomas, D. P. Thompson, P. Korgul, K. H. Jack, C. A. Fyfe and G. C. Gobbi, Polyhedron 3 (1984) 1267.CrossRefGoogle Scholar
  20. 20.
    D. C. Apperley, M. E. A. Cudby, R. K. Harris, G. L. Marshall, B. J. Say, K. Smith, D. P. Thompson and R. R. Yeung, Poster No. 602, 8th International Meeting on NMR Spectroscopy, University of Kent, July 1987.Google Scholar
  21. 21.
    R. Dupree, M. H. Lewis and M. E. Smith, J. Appl. Cryst. 21 (1988) 109.CrossRefGoogle Scholar
  22. 22.
    N. D. Butler, R. Dupree and M. H. Lewis, J. Mater. Sci. Lett. 3 (1984) 469.CrossRefGoogle Scholar
  23. 23.
    J. Sjoberg, R. K. Harris and D. C. Apperley, J. Mater. Chem. 2 (1992) 433.CrossRefGoogle Scholar
  24. 24.
    W. E. Cameron, Amer. Ceram. Soc. Bull. 56 (1977) 1003.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • K. J. D. Mackenzie
    • 1
  • R. H. Meinhold
    • 1
  • G. V. White
    • 1
  • C. M. Sheppard
    • 1
  • B. L. Sherriff
    • 2
  1. 1.New Zealand Institute for Industrial Research and DevelopmentLower HuttNew Zealand
  2. 2.Department of Geological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations