Advertisement

Journal of Materials Science

, Volume 29, Issue 10, pp 2541–2556 | Cite as

Particulate silicon nitride-based composites

  • Yu. G. Gogotsi
Review

Abstract

In an attempt to optimize the structure and properties of silicon nitride ceramics, a variety of novel processing techniques and materials compositions have evolved over the last 15 years. Among the most important, was the development of various silicon nitride-based composites. A review of particulate, silicon nitride-based composites other than whisker- or platelets-reinforced, is presented. Materials based on silicon nitride and SiAlONs, with additions of carbides, nitrides and borides of transition metals are described. Special emphasis is placed on TiN- and TiC-containing ceramics. The manufacture of composites by hot pressing, reaction sintering, pressureless and gas-pressure sintering is discussed. The data on properties, including conductivity, density, Young's modulus, strength, fracture toughness, hardness, thermal expansion, wear, creep and oxidation resistance are presented. Analysis of actual and potential uses of the selected composites demonstrates that the particulate composites are very promising as tool, structural and electronic materials.

Keywords

Oxidation Polymer Silicon Carbide Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Thümmler, J. Europ. Ceram. Soc. 6 (1990) 139.Google Scholar
  2. 2.
    F. Porz, Technol Manage. [4] (1990) 13.Google Scholar
  3. 3.
    Yu. G. Gogotsi, “Structural Ceramics: Manufacturing, Properties, Application” (Znanie, Kiev, 1990).Google Scholar
  4. 4.
    S. T. Buljan and V. K. Sarin, Composites 18 (1987) 99.Google Scholar
  5. 5.
    S. T. Buljan and J. G. Baldoni, Mater. Sci. Forum 47 (1989) 249.Google Scholar
  6. 6.
    S. T. Buljan and G. Zilberstein, in “Advanced Structural Ceramics”, edited by P. F. Becher, M. V. Swain and S. Somiya (MRS, Pittsburgh, PA, 1987) pp. 273–81.Google Scholar
  7. 7.
    R. Pompe, in “Proceedings of the 11th Risø International Symposium on Metallurgy and Materials Science”, edited by J. J. Bentzen (Risø National Laboratory, Roskilde, 1990), p. 79.Google Scholar
  8. 8.
    F. F. Lange, J. Am. Ceram. Soc. 56 (1973) 445.Google Scholar
  9. 9.
    C. Greshkovich and J. A. Palm, ibid. 63 (1980) 597.Google Scholar
  10. 10.
    J. C. Schuster and H. Nowotny, in “Proceedings of the 11th Plansee Seminar”, Vol. 1 (1985) pp. 899–911.Google Scholar
  11. 11.
    “Ceramic Material”, Sov. Pat. 537 986 (Institute for Problems of Materials Science, Kiev, 1975).Google Scholar
  12. 12.
    “Ceramic Tool Material”, Sov. Pat. 689 113 (Institute for Problems of Materials Science, Kiev, 1978).Google Scholar
  13. 13.
    G. G. Gnesin, I. I. Osipova, V. P. Yaroshenko and G. D. Rontal, Poroshk. Metall. [2] (1978) 48.Google Scholar
  14. 14.
    O. N. Grigor'ev, S. I. Chugunova, A. M. Shatokhin and V. P. Yaroshenko, ibid. [7]“, (1981) 73.Google Scholar
  15. 15.
    T. Mah, M. G. Mendiratta and H. A. Lipsitt, Am. Ceram. Soc. Bull. 60 (1981) 1229.Google Scholar
  16. 16.
    G. Zilberstein and S. T. Buljan, in “Advances in Materials Characterization II, Materials Science Research”, Vol. 19, edited by R. S. Snyder, R. A. Condrate and P. F. Johnson (Plenum Press, New York, 1985) p. 389.Google Scholar
  17. 17.
    S. T. Buljan and G. Zilberstein, in “Tailoring of Multiphase and Composite Ceramics”, Materials Science Research, Vol. 20, edited by R. E. Tressler et al. (Plenum Press, New York, 1986) p. 305.Google Scholar
  18. 18.
    F. Peni, J. Crampon, R. Duclos and B. Cales, J. Europ. Ceram. Soc. 8 (1991) 311.Google Scholar
  19. 19.
    M. Herrmann, Ch. Schubert, J. Pabst, H.-J. Richter, P. Obenaus and V. P. Jaroschenko, in “Verstärkung keramischer Werkstoffe”, Hamburg, 8–9 October 1991 (DGM-Informationsgesellschaft Verlag, Oberursel, 1991) pp. 235–48.Google Scholar
  20. 20.
    “Powder Mixture for the Tool Material”; Soviet Pat 919 289 (Institute for Problems of Materials Science, Kiev, 1981).Google Scholar
  21. 21.
    “Ceramic Tool Material”, Sov. Pat. 1152 196 (Institute for Problems of Materials Science, Kiev, 1983).Google Scholar
  22. 22.
    E. Kamijo, M. Honda, M. Higuchi, H. Takeuchi and T. Tanimura, Sumitomo Electr. Tech. Rev. 24 (1985) 183.Google Scholar
  23. 23.
    O. V. Bakun, O. N. Grigor'ev, G. G. Gnesin, I. I. Osipova, S. A. Firstov and V. P. Yaroshenko, Poroshk. Metall, [1] (1987) 45.Google Scholar
  24. 24.
    O. V. Bakun, A. Verschtedt, O. N. Grigor'ev, G. Kreher, V. I. Trefilov, D. Shneider and V. P. Yaroshenko, ibid. [6], (1987) 71.Google Scholar
  25. 25.
    C. Martin, B. Cales, P. Vivier and P. Mathieu, Mater. Sci. Eng. A109 (1989) 351.Google Scholar
  26. 26.
    V. P. Yaroshenko, I. I. Osipova, Yu. G. Gogotsi and D. A. Pogorelova, in “Tagungsband IX Internationale Pulvermetallurgische Tagung”, B. 3 (Dresden, 1989) p. 295.Google Scholar
  27. 27.
    H. Mostaghachi, in “Euro-Ceramics”, edited by G. de With, R. A. Terpstra and R. Metselaar (Elsevier, London, 1989) p. 1.410.Google Scholar
  28. 28.
    J. Crampon, R. Duclos and P. Vivier, ibid.“ p. 3.298.Google Scholar
  29. 29.
    Y. Yasutomi and M. Sobue, Ceram. Eng. Sci. Proc. 11 (1990) 857.Google Scholar
  30. 30.
    A. Bellosi, A. Tampieri and Yu-Zh. Liu, Mater. Sci. Eng. A127 (1990) 115.Google Scholar
  31. 31.
    Yu. G. Gogotsi, O. N. Grigorjew and W. P. Jaroschenko, Silikattechnik 41 (1990) 156.Google Scholar
  32. 32.
    C. J. Shih, J.-M. Yang and A. Ezis, Scripta Metall. 24 (1990) 24119.Google Scholar
  33. 33.
    V. Yaroshenko, Yu. Gogotsi and I. Osipova, in “Ceramics Today — Tomorrow's Ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1991) p. 2821.Google Scholar
  34. 34.
    Yu. G. Gogotsi, O. N. Grigor'ev and V. P. Yaroshenko, in “Abstracts of the 2nd European Conference on Advanced Materials and Processes” (Institute of Metals, London, 1991) p. 207.Google Scholar
  35. 35.
    A. Bellosi, S. Guicciardi and A. Tampieri, J. Europ. Ceram. Soc. 9 (1992) 82.Google Scholar
  36. 36.
    Yu. G. Gogotsi, V. K. Kazakov, V. A. Lavrenko, T. G. Protsenko and V. V. Shvaiko, Sov. J. Superhard Mater. 10 (1988) 33.Google Scholar
  37. 37.
    Yu. G. Gogotsi and V. A. Lavrenko, High Temp. Technol. 6 (1988) 79.Google Scholar
  38. 38.
    M. Herrmann, B. Balzer, Ch. Schubert and W. Hermel, J. Europ. Ceram. Soc. 12 (1993) 287.Google Scholar
  39. 39.
    S. Sōmiya, M. Yoshimura and N. Shinohara, Report Res. Lab. Engineering Materials, T.I.T. 6 (1981) 107.Google Scholar
  40. 40.
    H. J. Seifert, M. J. Hoffmann, H. L. Lukas and G. Petzow, in “Proceedings of the 2nd Conference of the European Ceramic Society”, Augsburg, 1991 (D. G. Köln, 1993) pp. 131–35.Google Scholar
  41. 41.
    G. G. Gnesin, E. I. Gervits, L. A. Shipilova, V. Ya. Petrovskii and A. A. Kas'yanenko, Sov. Powder Metall. Metal Ceram. 29 (1990) 483.Google Scholar
  42. 42.
    A. Tampieri, A. Bellosi and V. Biasini, in “Material Science Monographs”, Vol. 68, “Advanced Structural, Inorganic Composites”, edited by P. Vincenzini (Elsevier, New York, 1991) pp. 409–20.Google Scholar
  43. 43.
    Yu. G. Gogotsi, I. I. Osipova, S. I. Chugunova and V. Zh. Shemet, Sov. Powder Met. Metal Ceram. 26 (1986) 163.Google Scholar
  44. 44.
    M. Yoshimura, N. Morita, N. Nishioka, N. Ishizawa and S. Sōmiya, J. Ceram. Soc. Jpn 97 (1989) 910.Google Scholar
  45. 45.
    T. Kato, M. Yoshimura and S. Sōmiya, Report Res. Lab. Eng. Mater. T.I.T. 11 (1986) 45.Google Scholar
  46. 46.
    Idem, Yogyo-Kyokai-shi 89 (1981) 221.Google Scholar
  47. 47.
    F. F. Lange, Philos. Mag. 22 (1970) 983.Google Scholar
  48. 48.
    A. G. Evans, ibid. 26 (1972) 1327.Google Scholar
  49. 49.
    D. J. Green, P. S. Nicholson and J. D. Embury, J. Mater. Sci. 14 (1979) 1657.Google Scholar
  50. 50.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 565.Google Scholar
  51. 51.
    Idem 31 (1983) 577.Google Scholar
  52. 52.
    Idem, J. Am. Ceram. Soc. 67 (1984) 255.Google Scholar
  53. 53.
    D. J. Green, ibid. 66 (1983) C-4.Google Scholar
  54. 54.
    A. G. Evans, Mater. Sci. Eng. A105/106 (1988) 65.Google Scholar
  55. 55.
    M. V. Swain, Mater. Forum 13 (1989) 237.Google Scholar
  56. 56.
    B. A. Galanov and O. N. Grigor'ev, “Failure of the Elastic-Deformed Solid Heterophase Materials with the Periodic Microstructure” (IPM, Kiev, 1990).Google Scholar
  57. 57.
    G. V. Samsonov and I. M. Vinitskii, “Handbook of Refractory Compounds” (IFI/Plenum, New York, 1980).Google Scholar
  58. 58.
    R. C. West, ed. “Handbook of Chemistry and Physics”, 69th Edn (CRC Press, Cleveland, OH, 1988).Google Scholar
  59. 59.
    W. S. Williams and R. D. Shaal, J. Appl. Phys. 33 (1962) 955.Google Scholar
  60. 60.
    D. J. Magley, R. A. Winholtz and K. T. Faber, J. Am. Ceram. Soc. 73 (1990) 1641.Google Scholar
  61. 61.
    I. I. Osipova, A. M. Koval'chenko and L. L. Sartinskaya, Poroshk. Metall. [4] (1992) 46.Google Scholar
  62. 62.
    V. Petrovski, in “Key Engineering Materials”, Vols 89–91, edited by M. J. Hoffmann, P. F. Becher and G. Petzow (Trans Tech, 1994) pp. 455–60.Google Scholar
  63. 63.
    G. G. Gnesin (ed.), “Ceramic Tool Materials” (Kiev, Tekhnika, 1990).Google Scholar
  64. 64.
    L. M. Sheppard, Am. Ceram. Soc. Bull. 72 [4] (1993) 48.Google Scholar
  65. 65.
    F. Hong, R. J. Lumby and M. H. Lewis, J. Europ. Ceram. Soc. 11 (1993) 48.Google Scholar
  66. 66.
    W. Lin, J.-M. Yang, S.-J. Ting, A. Ezis and C. J. Shih, J. Am. Ceram. Soc. 75 (1992) 2945.Google Scholar
  67. 67.
    F. Hohg and M. H. Lewis, in “Processing of Engineering Ceramics” (American Ceramic Society, Westerville, 1993) in press.Google Scholar
  68. 68.
    I. Gotman and E. Y. Gutmanas, J. Mater. Sci. Lett. 9 (1990) 813.Google Scholar
  69. 69.
    Yu. G. Gogotsi, V. P. Yaroshenko and R. A. Morozova, “Composition of the Silicon Nitride-Based Ceramic and Method of Making the Material”, Sov. Pat. 1669 900 (1989).Google Scholar
  70. 70.
    J. Subrahmanyam and M. Vijaykumar, J. Mater. Sci. 27 (1992) 6249.Google Scholar
  71. 71.
    A. G. Merzhanov, in “Combustion and Plasma Synthesis of High-temperature Materials”, edited by Z. A. Munir and J. B. Holt (VCH, New York, 1990) p. 1.Google Scholar
  72. 72.
    O. N. Grigor'ev, G. S. Krivoshey, N. I. Perepelitsa and L. L. Khoroshun, Zavodsk. Laborat. [10] (1992) 37.Google Scholar
  73. 73.
    A. Kamiya and K. Nakano, J. Mater. Sci. Lett. 12 (1993) 430.Google Scholar
  74. 74.
    F. Lux, J. Mater. Sci. 28 (1993) 285.Google Scholar
  75. 75.
    G. G. Gnesin, E. I. Gervits, L. A. Shipilova, V. Ya. Petrovskii and A. A. Kas'yanenko, Poroshk. Metall. [4] (1990) 80.Google Scholar
  76. 76.
    T. Nagaoka, M. Yasuoka, K. Hirao and S. Kanzaki, J. Ceram. Soc. Jpn 100 (1992) 617.Google Scholar
  77. 77.
    M. Nakamura, A. Yoshida, Y. Nakajima, in “Proceedings of the 7th Symposium on Fundamental Technology for Next Generation”, Tokyo, 20–21 November 1988, pp. 11–20.Google Scholar
  78. 78.
    K. Kishi and S. Umebayashi, Nihon Seramikkusu 96 (1988) 725.Google Scholar
  79. 79.
    T. Ekström, in “Key Engineering Material”, Vols 89–91, edited by M. J. Hoffmann, P. F. Becher and G. Petzow (Trans Tech, 1994) pp. 327–332.Google Scholar
  80. 80.
    Y. Sato and M. Ueki, J. Ceram. Soc. Jpn 101 (1993) 365.Google Scholar
  81. 81.
    J. Zhu, X.-G. Ning, H.-G. Xu et al., J. Mater. Sci. 26 (1991) 3202.Google Scholar
  82. 82.
    G. Ziegler, Ceramic Forum International, Bericht. Deutsch. Keram. Ges. 68 (1991) 399.Google Scholar
  83. 83.
    Yu. G. Gogotsi, A. M. Koval'chenko, I. A. Kossko and V. P. Yaroshenko, sov. J. Frict. Wear 11 [4] (1990) 74.Google Scholar
  84. 84.
    A. M. Koval'chenko, Cand. Science Thesis, Kiev, IPM (1992).Google Scholar
  85. 85.
    A. M. Koval'chenko, I. I. Osipova, Yu. G. Gogotsi, V. P. Yaroshenko and G. N. Savranskaya, Trenie i Iznos 13 (1992) 654.Google Scholar
  86. 86.
    D. Holz, R. Janssen, K. Friedrich and N. Claussen, J. Europ. Ceram Soc. 5 (1989) 229.Google Scholar
  87. 87.
    A. M. Koval'chenko, Yu. G. Gogotsi and V. P. Yaroshenko, in “Mechanics and Physics of Fracture of Brittle Materials”, edited by S. A. Firstov (IPM, Kiev, 1992) pp. 99–105.Google Scholar
  88. 88.
    Yu. G. Gogotsi, A. M. Koval'chenko, I. I. Osipova, V. P. Yaroshenko and V. A. Goncharuk, Sverkhtverdye Mater. [3] (1992) 20.Google Scholar
  89. 89.
    I. Dörfel, W. Gesatzke, W. Österle and A. Skopp, in “Key Engineering Materials”, Vols 89–91, edited by M. J. Hoffmann, P. F. Becher and G. Petzow (Trans Tech, Aedermannsdorf, 1994) pp. 763–7.Google Scholar
  90. 90.
    D.-S. Park, H.-D. Kim, S.-Y. Lee and S. Kim, ibid., pp. 439–44.Google Scholar
  91. 91.
    M. Herrmann, A. Beger, Chr. Schubert, W. Hermel, E. Meissner and G. Ziegler, in “Materials by Powder Technology. PTM'93”, edited by F. Aldinger (DGM-Informationsgesellschaft-Verlag, Oberursel, 1993) pp. 779–84.Google Scholar
  92. 92.
    Yu. G. Gogotsi and G. Grathwohl, J. Mater. Sci. 28 (1993) 4279.Google Scholar
  93. 93.
    V. I. Trefilov, Yu. V. Milman and I. V. Gridneva, Crystal Res. Technol. 19 (1984) 413.Google Scholar
  94. 94.
    V. I. Trefilov, Yu. G. Gogotsi, O. N. Grigor'ev, V. P. Yaroshenko, V. A. Goncharuk and D. Yu. Ostrovoi, Sov. Powder Metall. Metal Ceram. 30 (1991) 158.Google Scholar
  95. 95.
    G. Ziegler, J. Heinrich and G. Wötting, J. Mater. Sci. 22 (1987) 3041.Google Scholar
  96. 96.
    J. Crampon and R. Duclos, Acta Metall. Mater. 38 (1990) 805.Google Scholar
  97. 97.
    Yu. G. Gogotsi, G. Grathwohl and F. Porz, in “Mechanische Eigenschaften keramischer Konstruktionswerkstoffe”, edited by G. Grathwohl (DGM Informationsgesellschaft, Oberursel, 1993) pp. 185–190.Google Scholar
  98. 98.
    Yu. G. Gogotsi, G. Grathwohl and G. E. Khomenko, in “Key Engineering Materials”, Vols 89–91, edited by M. J. Hoffmann, P. F. Becher and G. Petzow (Trans Tech, Aedermannsdorf, 1994) pp. 659–64.Google Scholar
  99. 99.
    F. Peni, J. Crampon and R. Duclos, Ceram. Int. 18 (1992) 413.Google Scholar
  100. 100.
    R. A. Andrievski, V. T. Ivannikov and V. S. Urbanovich, in “Key Engineering Materials”, Vols 89–91, edited by M. J. Hoffmann, P. F. Becher and G. Petzow (Trans Tech, Aedermannsdorf, 1994) pp. 445–8.Google Scholar
  101. 101.
    R. F. Voitovich, “Oxidation of carbides and nitrides” (Naukova Dumka, Kiev, 1981).Google Scholar
  102. 102.
    Yu. G. Gogotsi and F. Porz, Corrosion Sci. 33 (1992) 627.Google Scholar
  103. 103.
    Yu. G. Gogotsi, G. Grathwohl, F. Porz, V. V. Kovylyaev and A. D. Vasil'ev, in “Proceedings of the 2nd International Conference on Microscopy of Oxidation” (Institute of Materials, London, 1993) pp. 535–44.Google Scholar
  104. 104.
    Yu. G. Gogotsi, G. Dransfield and F. Porz, Oxid. Metals 39 (1993) 69.Google Scholar
  105. 105.
    Yu. G. Gogotsi, V. A. Lavrenko, “Corrosion of High-Performance Ceramics” (Springer, Berlin, 1992).Google Scholar
  106. 106.
    Ch.-Ch. Ge, W.-S. Liu, Y.-L. Xia and L.-M. Chen, in “Key Engineering Materials”, Vols 89–91, edited by M. J. Hoffmann, P. F. Becher and G. Petzow (Trans Tech, Aedermannsdorf, 1994) pp. 307–12.Google Scholar
  107. 107.
    Yu. G. Gogotsi, O. N. Grigor'ev and V. L. Tikush, Sov. Powd. Met. Metal Ceram. 27 (1988) 386.Google Scholar
  108. 108.
    Yu. G. Gogotsi, V. A. Lavrenko, T. G. Protsenko, A. I. Stegnij and V. L. Tikush, Sverkhtverdye Mater. [3] (1989) 22.Google Scholar
  109. 109.
    S. A. Gieskis and M. Terpstra (eds.), “Reinforced Ceramic Composites” (Elsevier, London, 1991).Google Scholar
  110. 110.
    S. T. Buljan and S. F. Wayne, Adv. Ceram. Mater. 2 (1987) 813.Google Scholar
  111. 111.
    A. Bellosi, Adv. Ceram. Glass 1 (1990) 18.Google Scholar
  112. 112.
    S. Chatterjee, S. Chandrashekhar and T. S. Sudarashan, J. Mater. Sci. 27 (1992) 3409.Google Scholar
  113. 113.
    T. Koyama and A. Nishiyama, in “Ceramics Today — Tomorrow's Ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1991) p. 2841.Google Scholar
  114. 114.
    H. Mostaghaci and R. Langlois, in “Ceramic Transactions. Ceramic Powder Science IV”, Vol. 22, edited by S. Hirano, G. L. Messing and H. Hausner (American Ceramic Society, Westerville, 1991) p. 655.Google Scholar
  115. 115.
    Idem, in “Material Science Monographs”, Vol. 68, “Advanced Structural, Inorganic Composites”, edited by P. Vincenzini (Elsevier, New York, 1991) pp. 573–81.Google Scholar
  116. 116.
    Yu. G. Gogotsi, Adv. Ceram. Glass [3] (1991) 6.Google Scholar
  117. 117.
    R. Larker, L.-Y. Wei, M. Olsson et al, in “Proceedings of the 4th International Symposium on Ceramic Materials and Components for Engines”, 1992, Vol. 4, pp. 340–7.Google Scholar
  118. 118.
    P. A. Page, C. R. Blanchard-Ardid and W. Wei, J. Mater. Sci. 23 (1988) 946.Google Scholar
  119. 119.
    Y. Yasutomi, K. Nakamura, M. Sobue and Y. Kubo, J. Ceram. Soc. Jpn, Int. Ed. 97 (1989) 145.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Yu. G. Gogotsi
    • 1
    • 2
  1. 1.Research Laboratory of Engineering MaterialsTokyo Institute of TechnologyYokohamaJapan
  2. 2.Institute for Problems of Materials ScienceKievUkraine

Personalised recommendations