Advertisement

Journal of Materials Science

, Volume 30, Issue 22, pp 5833–5840 | Cite as

Environmental stress cracking of PVC and PVC-CPE

Part III Crack growth
  • J. Breen
Papers

Abstract

The fracture toughness of Polyvinylchloride (PVC) and PVC modified with 10% chlorinated polyethylene (PVC-CPE) was studied in vapour and in liquid environments by crack growth measurements on single-edge notch specimens under three-point bending at 23°C. In addition, some results obtained in air at lower temperatures are presented. The fracture toughness is quantified by a stress intensity factor leading to failure after a given loading period. It is shown that for a given slow crack growth rate at 23 °C, the environment hardly affects the fracture toughness of PVC. In contrast, the slow crack growth in PVC-CPE at 23 °C is accelerated by the presence of benzene vapour, n-octane/benzene mixtures and gas condensate. A decrease in temperature results in an increase in fracture toughness, both for PVC and for PVC-CPE. A Dugdale model to describe the craze ahead of the crack was used to analyse the observed changes in fracture toughness.

Keywords

Chlorinate Fracture Toughness Stress Intensity Intensity Factor Stress Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Breen, J. Mater. Sci. 28 (1993) 3769.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 29 (1994) 39.CrossRefGoogle Scholar
  3. 3.
    X. Lu and N. Brown, ibid. 21 (1986) 2423.CrossRefGoogle Scholar
  4. 4.
    Idem, ibid. 21 (1986) 4081.CrossRefGoogle Scholar
  5. 5.
    A. Lustiger and R. D. Corneliussen, ibid. 22 (1987) 2470.CrossRefGoogle Scholar
  6. 6.
    N. J. Mills and N. Walker, Polymer 17 (1976) 335.CrossRefGoogle Scholar
  7. 7.
    G. P. Marshall, Plast. Rubb. Proc. Appl. 2 (1982) 169.Google Scholar
  8. 8.
    W. Döll and L. Könczöl, Adv. Polym. Sci. 91/92 (1990) 137.CrossRefGoogle Scholar
  9. 9.
    W. Döll, Polym. Eng. Sci. 24 (1984) 798.CrossRefGoogle Scholar
  10. 10.
    J. F. Mandell, A. Y. Darwish and J. F. MćGarry, ibid. 22 (1982) 826.CrossRefGoogle Scholar
  11. 11.
    L. R. Holloway and A. J. Naaktgeboren, Plast. Rubb. Compos. Proc. Appl. 15 (1991) 201.Google Scholar
  12. 12.
    J. G. Williams, G. P. Marshall, I. Graham and E. L. Zichy, Pure Appl. Chem. 39 (1974) 275.CrossRefGoogle Scholar
  13. 13.
    J. G. Williams and G. P. Marshall, Proc. R. Soc. Lond. A 342 (1975) 55.CrossRefGoogle Scholar
  14. 14.
    H. R. Brown and T. H. Chin, J. Mater. Sci. 15 (1980) 677.CrossRefGoogle Scholar
  15. 15.
    E. J. Kramer and E. W. Hart, Polymer 25 (1984) 1667.CrossRefGoogle Scholar
  16. 16.
    R. Schirrer, Adv. Polym. Sci. 91/92 (1990) 215.CrossRefGoogle Scholar
  17. 17.
    S. J. Israel, E. L. Thomas and W. W. Gerberich, J. Mater. Sci. 14 (1979) 2128.CrossRefGoogle Scholar
  18. 18.
    R. A. W. Fraser and I. M. Ward, Polymer 19 (1978) 220.CrossRefGoogle Scholar
  19. 19.
    J. L. S. Wales, Internal TNO report 268 (1981).Google Scholar
  20. 20.
    D. J. van Dijk, in “Proceedings of the Plastics Pipes VI”, University of York, 26–28 March 1985, (PRI, London, 1985) p. 19.1.Google Scholar
  21. 21.
    T. G. Meijering, Plast. Rubb. Proc. Appl. 5 (1985) 165.Google Scholar
  22. 22.
    L. Mascia, P. G. Wooldridge and M. J. Stokell, J. Mater. Sci. 24 (1989) 2775.CrossRefGoogle Scholar
  23. 23.
    E. J. Kramer and L. L. Berger, Adv. Polym. Sci. 91/92 (1990) 1.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Breen
    • 1
  1. 1.TNO Plastics and Rubber Research InstituteJA DelftThe Netherlands

Personalised recommendations