Journal of Materials Science

, Volume 30, Issue 22, pp 5819–5824 | Cite as

Influence of temperature on the low- and high-frequency relaxation in a TTB-type ferroelectric relaxor Pb2K(Nb0.1Ta0.9)5O15

  • Z. Lu
  • J. -P. Bonnet
  • J. Ravez
  • P. Hagenmuller


Dielectric measurements on Pb2K(Nb0.1Ta0.9)5O15 ceramics have been reported at 140<T<530 K in the 20–109 Hz frequency range. The tetragonal tungsten bronze-type (TTB) material shows a typical ferroelectric relaxor behaviour. Three dielectric dispersions are observed. The relaxor behaviour results from a thermally activated relaxation with a large time distribution. This relaxation could be interpreted in terms of a polar microdomain concept. The two other dielectric dispersions result from a space charge effect and from a relaxation probably related to the TTB structure.


Polymer Tungsten Material Processing Space Charge Time Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Smolenskii, J. Phys. Soc. Jpn 28 (suppl.) (1970) 26.Google Scholar
  2. 2.
    L. E. Cross, Ferroelectrics 76 (1987) 241.CrossRefGoogle Scholar
  3. 3.
    Yao Xi, Chen Zhili and L. E. Cross, J. Appl. Phys. 54 (1983) 3399.CrossRefGoogle Scholar
  4. 4.
    S. J. Butcher and N. W. Thomas, J. Phys. Chem. Solids 52 (1991) 595.CrossRefGoogle Scholar
  5. 5.
    N. W. Thomas, J. Phys. Chem. Solids 51 (1990) 1419.CrossRefGoogle Scholar
  6. 6.
    N. de Mathan, E. Husson, P. Gaucher and A. Morell, Mater. Res. Bull. 25 (1990) 427.CrossRefGoogle Scholar
  7. 7.
    S. L. Swartz, C. A. Randall and A. S. Bhalla, J. Am. Ceram. Soc. 72 (1989) 637.CrossRefGoogle Scholar
  8. 8.
    T. Tsurumi and Y. Hoshino, ibid. 72 (1989) 278.CrossRefGoogle Scholar
  9. 9.
    R. Guo, A. S. Bhalla, C. A. Randall and L. E. Cross, J. Appl. Phys. 67 (1990) 6405.CrossRefGoogle Scholar
  10. 10.
    V. V. Kirillov and V. A. Isupov, Ferroelectrics 5 (1973) 3.CrossRefGoogle Scholar
  11. 11.
    Z. G. Lu, J. P. Bonnet, J. Ravez and P. Hagenmuller, J. Eur. Solid State Inorg. Chem. 30 (1993) 8.Google Scholar
  12. 12.
    Lu Zhigao, J. P. Bonnet, J. Ravez, J. M. Réau and P. Hagenmuller, J. Phys. Chem. Solids 53 (1992) 1.CrossRefGoogle Scholar
  13. 13.
    N. Belhadz-Tahar and A. Fourrier-Lamer, IEEE Trans. Microwave Theor. Tech. MTT 34 (1986) 346.CrossRefGoogle Scholar
  14. 14.
    A. Largeteau and D. Aviles-Castro, Mater. Res. Bull. 25 (1990) 75.Google Scholar
  15. 15.
    A. K. Jonscher, Electrochim. Acta 35 (1990) 1595.CrossRefGoogle Scholar
  16. 16.
    Idem, “Dielectric relaxation in solids” (Chelsea Press, London, 1983).Google Scholar
  17. 17.
    K. S. Cole and R. S. Cole, J. Chem. Phys. 9 (1941) 341.CrossRefGoogle Scholar
  18. 18.
    H. Fröhlich, “Theory of dielectric, dielectric constant and loss”, 2nd Edn. (Oxford University Press, London, 1958).Google Scholar
  19. 19.
    Lu Zhigao, Thèse 698, Université Bordeaux I (1991).Google Scholar
  20. 20.
    R. Guo, PhD Thesis, Pennsylvania State University (1990).Google Scholar
  21. 21.
    J. K. Viji and A. M. Varaprasad, Ferroelectrics 38 (1981) 865.CrossRefGoogle Scholar
  22. 22.
    A. M. Varaprasad, Jpn J. Appl. Phys. 24 (suppl.) (1985) 361.CrossRefGoogle Scholar
  23. 23.
    W. L. Zhong, P. L. Zhang, H. C. Chen, F. S. Chen and Y. Y. Song, Ferroelectrics 74 (1987) 325.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Z. Lu
    • 1
  • J. -P. Bonnet
    • 1
  • J. Ravez
    • 1
  • P. Hagenmuller
    • 1
  1. 1.Laboratoire de Chimie du Solide du CNRSUniversité de Bordeaux ITalence CedexFrance

Personalised recommendations