Journal of Materials Science

, Volume 30, Issue 22, pp 5813–5818 | Cite as

Tensile strength of silicon carbide fibre bundles at elevated temperatures

  • G. Emig
  • R. Wirth


The mechanical properties of commercially available SiC-based ceramic fibres were measured in the temperature range from 400–1300°C. The measurements were performed in air and in inert gas atmospheres, respectively. The Nicalon and Tyranno fibres were tested as filament bundles and the decrease in strength occurring at temperatures above 600 °C was found in both atmospheres. To obtain a well-defined gauge length at the testing temperature, a furnace with very steep temperature gradients at both ends was built. To eliminate grip-induced damage in the heating zone the fibre bundles were fixed outside the furnace with cold grip units. These grips guaranteed the uniformity of load distribution imposed on to each of the individual filaments in the fibre bundle. A significant shrinkage of the fibres occurring during the creep test performed under low loads indicates a change in the microstructure of the fibres at high temperatures.


Furnace Carbide Tensile Strength Shrinkage Silicon Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Pysher, K. C. Goretta, R. S. Hodder Jr and R. E. Tressler, J. Am. Ceram. Soc. 72 (1989) 284.CrossRefGoogle Scholar
  2. 2.
    A. S. Fareed, P. Fang, M. J. Koczak and F. M. Ko, Am. Ceram. Soc. Bull. 66 (1987) 353.Google Scholar
  3. 3.
    T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, J. Mater. Sci. 19 (1984) 1191.CrossRefGoogle Scholar
  4. 4.
    Ph. Schreck, C. Vix-Guterl, P. Ehrburger and J. Lahaye, ibid. 27 (1992) 4237.CrossRefGoogle Scholar
  5. 5.
    D. J. Pysher and R. E. Tressler, ibid. 27 (1992) 423.CrossRefGoogle Scholar
  6. 6.
    R. E. Tressler and J. A. Dicarlo, in “Proceedings of the 6th European Conference on Composite Materials, Bordeaux; EECM-6, Euro-Japanese Colloquium on Ceramic Fibres (eds) A. R. Bunsell and I. Kimpara” (1993) pp. 33–49.Google Scholar
  7. 7.
    R. Bodet, J. Lamon and R. E. Tressler, ibid. pp. 75–83.Google Scholar
  8. 8.
    G. Simon and A. R. Bunsell, J. Mater. Sci. 19 (1984) 3649.CrossRefGoogle Scholar
  9. 9.
    Idem, ibid. 19 (1984) 3658.CrossRefGoogle Scholar
  10. 10.
    D. B. Fischbach, P. M. Lemoine and G. V. Yen, ibid. 23 (1988) 987.CrossRefGoogle Scholar
  11. 11.
    J. V. Villeneuve, D. Mocaer, R. Pailler, R. Naslain and P. Olry, ibid. 28 (1993) 1227.CrossRefGoogle Scholar
  12. 12.
    Hyoun-Ee Kim and A. J. Moorhead, J. Am. Ceram. Soc. 74 (1991) 666.CrossRefGoogle Scholar
  13. 13.
    M. Huger, S. Souchard and C. Gault, J. Mater. Sci. Lett. 12 (1993) 414.CrossRefGoogle Scholar
  14. 14.
    J. Lipowitz, J. A. Rabe and R. M. Salinger, in “International Fiber Science Technology Series 12, 1993, Vol. 3, “High Technology Fibers”, Part C” pp. 207–73.Google Scholar
  15. 15.
    B. A. Bender, J. S. Wallace and D. J. Schrodt, J. Mater. Sci. 26 (1991) 970.CrossRefGoogle Scholar
  16. 16.
    P. Le Coustumer, M. Monthioux and A. Oberlin, J. Eur. Ceram. Soc. 11 (1993) 95.CrossRefGoogle Scholar
  17. 17.
    J. Lipowitz, Am. Ceram. Soc. Bull. 70 (1991) 1888.Google Scholar
  18. 18.
    T. Shimoo, Y. Kakehi, H. Chen and K. Okamura, Funtai oyobi Funmatsu Yakin 39 (1992) 86.Google Scholar
  19. 19.
    D. J. Pysher, Nanying Jia, R. J. Bodet and R. E. Tressler, in “High Performance Composites of the 1990's”, edited by S. K. Das, C. P. Ballard and F. Marikar (TMS, Warrendale, PA, 1990) pp. 267–81.Google Scholar
  20. 20.
    J. A. Dicarlo and G. N. Moscher, in “Failure Mechanisms in High Temperature Composite Materials”, ASME, AD-Vol. 22/AMD-Vol. 122 (1991) pp. 15–22.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • G. Emig
    • 1
  • R. Wirth
    • 2
  1. 1.Institut für Technische Chemie IUniversität ErlangenErlangenGermany
  2. 2.Institut für Chemische TechnikUniversität KarlsruheKarlsruheGermany

Personalised recommendations